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Abstract: Amide bonds are the most prevalent structures found in organic molecules and various
biomolecules such as peptides, proteins, DNA, and RNA. The unique feature of amide bonds
is their ability to form resonating structures, thus, they are highly stable and adopt particular
three-dimensional structures, which, in turn, are responsible for their functions. The main focus of this
review article is to report the methodologies for the activation of the unactivated amide bonds present
in biomolecules, which includes the enzymatic approach, metal complexes, and non-metal based
methods. This article also discusses some of the applications of amide bond activation approaches in
the sequencing of proteins and the synthesis of peptide acids, esters, amides, and thioesters.

Keywords: peptide bond cleavage; amide bond resonance; twisted amides; enzymes; metal
complexes; catalysts

1. Introduction

The amide bond is one of the most abundant chemical bonds and widely exists in many organic
molecules and biomolecules [1–6]. Nature has used amide bonds to make these important biomolecules
because of the high stability of amide bonds towards various reaction conditions (acidic and basic
conditions), high temperature, and the presence of other chemicals [7]. The high stability of amide
bonds is attributed to its tendency to form a resonating structure, which provides a double bond
character to the amide CO-N bond (Figure 1) [8–10]. The resonance of these amide bonds forms
a planar structure and hinders the free rotation around the CO-N bond, thus, it is responsible for
3D structures adopted by proteins and other biomolecules. These 3D structures of biomolecules are
responsible for various important biological functions.
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Figure 1. Classical amide bond resonance.

Hansen et al. carried out the rate studies on the hydrolysis of amide bonds at various pH
conditions [11]. The study concluded that at pH 7, the rate of hydrolysis is due to the direct attack
of water on peptide and measured as kH2O. The rate constant showed that the half-life of the amide
bonds is 267 years, similar to the value determined by Radzicka and Wolfenden [12]. This study also
showed that the rates of acid (kH3O+) and base hydrolysis (kOH−) are identical, therefore, the rate of
the hydrolysis of the peptide bond is dominated by kH2O throughout the pH range from pH 5–9.
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Recently, various methods have been reported in the literature to activate the amide bonds towards
a variety of nucleophiles or electrophiles for the synthesis of other organic compounds. This includes
the use of enzymes, metal complexes, and non-metal based methods [13–15]. One widely reported
approach for the activation of amide bonds involves the distortion of amide bonds, thus, the amide
bond is no longer able to form a resonating structure, loses its double bond character, and becomes
more susceptible to nucleophilic or electrophilic attack. A higher distortion of the amide bond from
the planar structure makes it more reactive, as evidenced by various twisted amide bonds present in
cyclic nonplanar bridged lactams, as demonstrated by Stoltz [16,17], Kirby [18–20], and others [21–23]
(Figure 2). One of the special cases to achieve maximum rotational inversion of the amide bond so that
it remains in the twisted conformation is the use of N-acyl-glutarimides [24–29] and N,N-substituted
amide bonds [30,31] (Figure 2). It is this strong distortion of amide bonds that provides amide bonds
with a high reactivity toward a variety of nucleophiles and electrophiles.
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Figure 2. Twisted amides for activation of amide bonds.

There are already some excellent review articles in the literature covering the reactivity of
twisted/activated amide bonds for the synthesis of the variety of different organic molecules such as
ketones, esters, acids, and alcohols, by cross-coupling reactions [24–31]. The main focus of this
review is to summarize the methods for the activation of less reactive amide bonds present in
biomolecules such as peptides, proteins, glycopeptides, nucleotides in DNA and RNA and various
other peptide bioconjugates, toward attack by various nucleophiles. This task was accomplished
by various methods such as by using biological molecules, metal complexes, and non-metal based
methods and is discussed below.

2. Biomolecules for the Activation of Amide Bonds—The Enzyme-Directed Hydrolysis
of Amides

We have summarized different kinds of enzymes, their mechanisms of hydrolysis of unactivated
peptide bonds, and the point of cleavages in Table 1.
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Table 1. Enzymatic directed hydrolysis of peptide bonds.

Entry Enzyme Method of Hydrolysis Point of Cleavage Ref.

1 Serine and
Cysteine Proteases

Oxyanion binding hole with
catalytic triad - [32–37]

2 Metallo-endopeptidase Thermolysine with Zn2+ binds to
His 142, His 146, Glu 166

Internal peptide bonds on the
N-terminal side of large

hydrophobic amino acids
[38–51]

3 Metalloexopeptidase Carboxypeptidase A with Zn2+

through Lewis acid activation
C-terminus comprising large

hydrophobic amino acids [52–54]

4 O-GlcNAc transferase Glycosylation followed by enzyme
catalyzed pyroglutamate formation N-terminal glutamic acid [55,56]

5 Nicotinamidase Enzyme Chelation to Zn2+ and
catalytic triad

Nicotinamide [57–60]

6 Flavoenzyme Flavin hydroperoxide intiated
oxidative mechanism

Unactivated amide bond
in uracil [61–63]

7 Antibody Fab-BL 125 Catalyzes unactivated primary
amide bond hydrolysis

Primary amide bond of L-isomer
of peptides [64,65]

8 RNA Mg2+ catalyzed mechanism
Unactivated alkyl amide of

DNA analog [66]

2.1. Serine Proteases

Amide bonds are widely present in proteins due to their high stability and the tendency of amide
bonds to exist in resonating structures, which is one of the key factors responsible for secondary
structures adopted by proteins and their biological activities. Nature has developed some methods for
the cleavage of highly stable amide bonds to control their functions. One such approach is the use
of enzymes (serine proteases), which have active sites, and binding pockets for binding to particular
amino acids followed by the activation of amide bonds for hydrolysis. These enzymes exist in various
families such as trypsin, chymotrypsin, elastase, subtilisin, etc., but have a similar catalytic site
containing oxyanion binding hole with Ser, His and Asp triad [32,33]. Some of the proteases have
catalytic dyads with two amino acids at the active site, however, triads are the most common.

All these enzymes based on the binding pocket prefer to bind to particular amino acids but the
mechanism by which they hydrolyze the amide bond is similar. During the catalysis, these enzymes
form an oxyanion hole made up of three amino acids—His, Asp, and Ser—which work in a synergistic
manner to break the amide bond (Figure 3). First, the side chain of Asp makes a hydrogen bond
with histidine, thus making it more nucleophilic. Second, histidine forms a strong H-bond with the
hydroxyl group of serine and abstracts the proton from the hydroxyl group (OH) of serine which
in turn attacks amide bond to form a tetrahedral transition state (TS). This TS eventually collapses
resulting in the hydrolysis of the amide bond by acid–base catalysis. Wells et al. demonstrated the
importance of these residues at the active site by mutating it to alanine [32,33]. They showed that any
mutation in the catalytic triad greatly reduces the turnover number which is a consequence of the
changes in the enzyme mechanism. Residues in the catalytic triad function in a strongly synergistic
manner and contribute a factor of 2 × 106 to the rate enhancement. The study concluded that enzymes
increase the rate of amide bond hydrolysis at by least 109 to 1010 times that of the non-enzymatic
hydrolysis of amide bonds.
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Figure 3. General pathway of serine proteases directed amide bond hydrolysis.

2.2. Cysteine Proteases

Cysteine proteases (CPs) hydrolyze the peptide bonds with maximum efficiency at pH 4–6.5 [14].
The thiol group of cysteine protease is susceptible to oxidation so the environment of the enzyme is
reducing in nature. Till now 21 families of CPs have been discovered [34–37]. CPs form a triad at the
active site during the hydrolysis of the peptide bond made up of Cys-His-Asn residues. First, Asn
forms the hydrogen bond with His, then His abstracts the proton from Cys to generate a nucleophilic
thiolate ion (S−) similar to enolate ion generated by serine proteases (Figure 3). Next, the thiolate ion
(S−) attacks the carbonyl group of the peptide resulting in the formation of a tetrahedral intermediate
TS followed by the hydrolysis of the amide bond [34–37].

2.3. Metalloproteases

Metalloproteases are members of a class of proteases that require a metal ion cofactor at
the active site for the hydrolysis of peptide bonds [38]. The most common metal ion cofactor
present in metalloproteases is the zinc ion (Zn2+) [39]. Other transition metals such as Co2+ and
Mn2+ are capable of restoring the functions in zinc-metalloproteases where the Zn2+ core has been
removed [39]. Metalloproteases are divided into two major families: metalloendopeptidases and
metalloexopeptidases. The names of these families are based on the site of the hydrolysis of the peptide
bonds [40,41]. Metalloendopeptidases cleave the internal amide bonds whereas metalloexopeptidases
cleave the amide bonds present at the C- or N-terminus of peptides.

2.3.1. Metalloendopeptidase: Thermolysin

Thermolysin (TLN) catalyzes the cleavage of the internal peptide bond at the amino-side of large
hydrophobic amino acids, such as leucine, isoleucine, or phenylalanine. TLN and TLN-like proteins
require Zn2+ as a metal ion cofactor for the cleavage of amide bonds [42–47].

TLN-mediated hydrolysis of the peptide bond is a two-step process (Figure 4) [48–51]. The active
site of TLN contains three residues—His142, His146, Glu166—and a water molecule, which are bound
to the Zn2+ ion. First, the carbonyl group of the peptide coordinates with Zn2+ and displaces the
hydrogen of a water molecule to form an H-bond with Glu143 and the oxygen of the water molecule
remains associated to the Zn2+ ion, resulting in the formation of the enzyme-substrate complex (ES).
Second, the oxygen of the water attached to Zn2+ attacks the carbonyl carbon of the peptide, resulting
in the formation of transition state 1 (TS1). TS1 is stabilized by the formation of the H-bond with
Asp226 and His231 at the carbonyl oxygen of the peptide followed by the formation of intermediate
gem-diolate (INT) by the breakage of hydroxyl OH bond of water. The amide of the peptide forms a
hydrogen bond with the H of H2O. Third, the carbonyl bond rearrangement in TS2 leads to the breakage
of the amide bond (CONH) of the peptide and releases the N-terminal peptide. The rate-determining
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studies showed that the collapse of a zwitterionic tetrahedral intermediate (INT) is a rate-limiting step
(Figure 4).Molecules 2018, 23, x 5 of 43 
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2.3.2. Metalloexopeptidase: Carboxypeptidase A

Carboxypeptidase A (CPA) is a 35 kDa metalloenzyme and contains a Zn2+ ion cofactor in its
active site [52–54]. CPA is an exopeptidase, which catalyzes the hydrolysis of amide bonds present
at the C-terminus comprising large hydrophobic side chains. Two different mechanisms have been
proposed for the cleavage by these metalloproteases (Figure 5) which showed the importance of Lewis
acid catalysis for the activation of amide bonds [53,54]. One involves the Lewis-acid activation of the
carbonyl group of the amide bond by Zn2+, followed by the attack of water (Figure 5). The second
involves the Lewis-acid activation of H2O by Zn2+ ions followed by the attack of the hydroxide ion of
the water on the carbonyl group of the amide bond (Figure 5).
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2.3.3. Glutamate Glycosylation for Amide Bond Cleavage

Human enzyme O-GlcNAc transferase (OGT) is essential for the cleavage of amide bonds
in host cell factor-1 (HCF-1). HCF-1 cleavage takes place at the N-terminal glutamic acid by the
glycosylation which is catalyzed by enzyme OGT. Mechanistic studies showed that the glycosylation
of the glutamate side chain (intermediate 1, Figure 6) leads to the formation of an enzyme-catalyzed
internal pyroglutamate formation (intermediate 2, Figure 6) with the amidic nitrogen of the peptide
backbone chain, which then undergoes spontaneous hydrolysis (Figure 6) [55]. Detailed mechanistic
studies showed that the rate of conversion of glycopeptide to internal pyroglutamate was an order of
magnitude slower than observed in the presence of OGT, thus, it was concluded that both the first and
second steps occurred while the peptide is bound to OGT (Figure 6). Hydrolysis likely occurs after
dissociation from the enzyme. It has also been reported that glycosylation on Thr next to glutamate
also prevents the cleavage at the glutamate (Glu) because of the steric hindrance and thus the enzyme
is unable to carry out the glycosylation of glutamate [56].
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2.3.4. Nicotinamidase (Pnc1) for the Hydrolysis of the Amide Bond of Nicotinamide

Nicotinamidases catalyze the cleavage of nicotinamide, which is a critically important part of
NAD+ and NADH, to nicotinic acid and ammonia (Figure 7). A detailed study showed that both the
carbonyl oxygen and the ring nitrogen of nicotinamide are critical for binding to the nicotinamidases
and reactivity [57–60].
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Figure 7. Mechanistic pathway of Pnc1 for hydrolysis of nicotinamide.

Three residues—Asp51, His53, and His94—in nicotinamidase (Pnc1) directly coordinate with Zn2+

at the active site and three other residues act as a catalytic triad (Cys167, Asp8, and Lys122) (Figure 7).
In the first step, the substrate binds to the Zn2+ by nitrogen of pyridine ring and displaces the water
molecules ligated to the Zn2+. Next, Asp8 removes the proton from Cys167, forming a thiolate, which,
in turn, react with the amide carbonyl carbon of nicotinamide, leading to the formation of a tetrahedral
intermediate (INT). The tetrahedral intermediate collapsed, resulting in the breakage of the amide
bond and release of the ammonia. This is followed by the release of the nicotinic acid from the active
site of the enzyme by acid-base catalysis.

2.3.5. Flavoenzyme-Mediated Hydrolysis of the Amide Bond

Begley et al. demonstrated the role of flavoenzyme in the cleavage of the unactivated amide bond
in uracil, a building block for RNA (Figure 8) [61–63]. The detailed mechanistic analysis showed that
the reaction takes place through the oxidative mechanism that is initiated by the addition of a flavin
hydroperoxide to the C* carbonyl of uracil, forming a tetrahedral intermediate (INT) (Figure 8). This is
followed by the collapsing of the tetrahedral intermediate (INT), leading to the cleavage of an amide
bond in uracil. This was the first example where such chemistry was shown by flavin hydroperoxides.
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2.3.6. Primary Amide Bond Hydrolysis by Antibodies

The antibody Fab-BL125 catalyzes the hydrolysis of the unactivated primary amide bond of the
L-isomer of peptides to generate free peptide acid (Figure 9). The antibody showed high regio- and
diastereoselectivity since the D-proline primary amide diastereoisomer did not undergo any hydrolysis.
The antibody Fab-BL125 decreases the half-life of the peptide from 17.5 years to only 3.9 h. Such an
antibody was obtained by using the α-amino boronic acid Hapten by a direct selection strategy from
the antibody combinatorial libraries [64,65].
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2.3.7. RNA-Assisted Cleavage of Amide Bonds

A group I RNA obtained by in vitro evolution catalyzes the cleavage of unactivated alkyl amides
of DNA analog. This includes substrates with an amide bond that joins either two DNAs, or a DNA
with a short peptide. The RNA increases the rate of hydrolysis by more than 103 in comparison
to the uncatalyzed reaction. The RNA-catalyzed amide bond cleavage was entirely dependent on
Mg2+ where Mg2+ acts as a Lewis acid thus activating the carbonyl group of the amide bond for
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the nucleophilic attack by the hydroxy group of RNA (Figure 10). No amide bond cleavage was
detected in the presence of other metal ions such as Zn2+, Ca2+, or Sr2+. A trace amount of amide bond
cleavage was observed in the presence of MnCl2 which is in contrast to the RNA and DNA cleavage
reactions [66].
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To determine the generality of the amide bond cleavage by RNA, a series of substrates were
explored. If a short DNA is attached to a peptide or an amino acid by using an amide bond,
the immediate cleavage at the amide bond was observed in the presence of the RNA. The cleavage of
the amide bond between the amino acid residues was not observed.

3. Metal Complexes for the Activation of Amide Bonds

We have summarized different kinds of metal-based complexes, their mechanisms of hydrolysis
of unactivated peptide bonds and point of cleavages in Table 2.

Table 2. Metal catalyzed hydrolysis of peptide bonds.

Entry Metal Complex Method of Hydrolysis Point of Cleavage Ref.

1 Simple metal ions Lewis acidity of metal ion C-terminal of peptide [67–72]

2 Zr POMs,
Zr MOF-808 Lewis acidity of metal ion C-terminal of peptide [73–82]

3 Mo(VI) Lewis acidity of metal ion and formation of
5 membered ring C-terminal side of Asp [81,82]

4 Co(III) N-terminal amine intiated tertiary complex C-terminal of peptide [83–88]

5 Mo(II) Favorable six-membered chelate ring C-terminal side of Cys [89]

6 Pd(II), Pt(II) Carboxylic group of amino acid and side chain of
amino acid anchoring metal complex

C-terminal side of Met, His, Cys
and S-MeCys [90–98]

7 Pd(0) Methionine side chain anchoring metal complex Second amide bond upstream
from Met [99–102]

8 Co(III) and Cu(II)
Lewis acidity activation and PNA for selectivity

towards a particular protein

Mb = Leu 89 − Ala 90
[103–111]PDF = Gln 152 − Arg 153

BSA = Solvent exposed portion

9 Ni(II) Non Lewis acid based N,O acyl rearrangement N-terminal side of Ser/Thr [112,113]

10 Sc(III) Lewis acid based N,O acyl rearrangement N-terminal side of Ser/Thr [114]

Another approach for the cleavage of peptide bonds involves the use of metal complexes.
This metal complex has potential applications in the field of chemical biology, biochemistry,
and bioengineering. A variety of metal ion complexes has been utilized for testing the reactivity
with substrates such as peptides, and proteins [67]. Most of the metal catalyzed reactions reported so
far are based on the activation of amide carbonyl or water by the Lewis acid mechanism of the metal
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ion. Another metal ion hydrolysis mechanism involves the formation of a square planar complex of
the metal ions Cu(II), Ni(II), or Pd(II) with the Ser/Thr-His or Ser/Thr-Xaa-His sequence leading to
the N→O rearrangement of the acyl moiety resulting in the cleavage of the peptide bond (Figure 11).
In this section, we will provide few examples of both Lewis acid and the N→O acyl rearrangement for
the cleavage of peptide bonds.
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3.1. Lewis Acid Mediated Hydrolysis

3.1.1. Simple Metal Ions

Yashiro et al. reported that the rate of hydrolysis of peptide bonds increases by almost all the
metal ions and the highest conversion was observed for Zn(II) [68–72]. The active intermediate was
metal complexes where metal binds to both the carbonyl group and the N-terminal amino group of
the peptide bond. Cleavage of the peptide bond in the presence of the metal takes place through the
mechanism in Figure 11b.

3.1.2. Oxo Metal Ions

Parac-Vogt et al. proved that polyoxometalates oxo-metal compounds such as MoO2
−4, WO2

−4,
CrO2

−4, and VO2
−4 cleave the peptide bonds in various dipeptides [73–77]. They have shown

that these oxo-metal compounds also hydrolyze the amide bonds in their regular oligomeric forms,
polyoxometalates (POMs). A POM is a unit where one or more atoms can be replaced by a metal center
leading to the change in the coordination properties of POM. POMs were utilized for the Zr(IV)- and
Ce(IV)-assisted peptide bond hydrolysis because they are homogenous in nature [78,79].

Zirconium Complex Mediated Hydrolysis of Peptide Bonds

Parac-Vogt et al. reported the hydrolysis of peptide bonds catalyzed by a polyoxometalate
complex for the first time. They demonstrated the role of metal-substituted Wells-Dawson type
polyoxometalates K15H[Zr(α2-P2W17O61)2]·25H2O for the hydrolysis of peptide bonds in diglycine,
triglycine, tetraglycine, and pentaglycine (GG), yielding glycine as a final product (Figure 12) [80].
A detailed mechanistic investigation by NMR showed that the free amino terminus and both carbonyl
functionalities of GG interact with polyoxometalates K15H[Zr(α2-P2W17O61)2]·25H2O either by the
formation of metal ion coordination complex or by the non-covalent interactions of the protonated
amino group with the negatively charged surface of POMs, thus responsible for the activation of amide
bonds towards hydrolysis. These POMs selectively cleave the C-terminal amide bond of glycylglycyl
amide (GGNH2), resulting in the formation of GG. No free glycine amide (GNH2) was detected during
the course of the reaction.
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Figure 12. Peptide hydrolysis catalyzed by a polyoxometalate complex.

Recently, Vogt et al. utilized the MOF-808, a Zr(IV)-based metal−organic complex for the
hydrolysis of the peptide bond in a wide range of peptides and proteins such as hen egg white
lysozyme (HEWL) under physiological conditions [81,82]. The MOF-88 is heterogeneous in nature and
is thus a reusable catalyst. The experimental studies and calculations showed that MOF-808 hydrolyzed
the Gly-Gly bond by the formation of the active complexes with two adjacent Zr(IV) centers of the
{Zr6O8} core by coordination with amide oxygen and the amine nitrogen atoms. The catalytic efficiency
of MOF-808 towards the hydrolysis of peptides is dependent on the bulkiness and nature of the side
chain amino acid residues. Dipeptides with small or hydrophilic residues undergo cleavage faster as
compared to those with bulky and hydrophobic residues.

Asp-Xaa Selective Hydrolysis of the Peptide Bond by Oxo-Metal Ions

It has been reported that oxomolybdate(VI) catalyzes the cleavage of various peptides containing
aspartic acid (Asp) with cleavage at the C-terminal side of the Asp residue. This is due to the attack
of the side chain of the Asp on the amidic carbonyl which is activated by the coordination with
oxomolybdate(VI), resulting in the formation of the five-membered ring and simultaneous cleavage of
the amide bonds (Figure 13) [81,82].
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Various Other Metal Complexes

The Westheimer and Trapmann groups showed that the metal complexes containing Co(II),
Cu(II), and Ni(II) ions cleave various dipeptides [83,84]. Out of various metal complexes, the Co(III)
complex [Co(trien)OH(H2O)]2+ is one of the widely studied metal ion complexes and carried out the
rapid hydrolysis of the peptide bond [85–88]. The detailed mechanistic investigation showed that first,
the metal complex [Co(trien)OH(H2O)]2+ forms a tertiary complex with a dipeptide by the replacement
of an equatorially coordinated water molecule in the octahedral Co(III) complex by the N-terminal
amine of the peptide. This mode of coordination brings the axially bound hydroxyl group in close
proximity to the peptide carbonyl resulting in the hydrolysis of the peptide bond (Figure 14).
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Anchoring at Cys Side Chains: Molybdocene

Erxleben et al. showed that molybdocene dichloride, Cp2MoCl2, cleaves the amide bond at
the C-terminal side of cysteine to generate Cys-Gly from Gly-Cys-Gly [89]. The cleavage is highly
selective for the C-side of Cys because it leads to the formation of the favorable six-membered ring.
The mechanism of this reaction is illustrated in Figure 15 [89].
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3.1.3. Anchoring at Met, His, and Cys Side Chains: Palladium(II) Complexes for the Cleavage of
Amide Bonds

Figure 16 shows the examples of platinum(II) and palladium(II) complexes which are known for
the cleavage of amide bonds under mild conditions. These platinum(II) and palladium(II) complexes
attach to the sulfur atom of cysteine, S-methylcysteine, and methionine in peptides, thus, promoting the
selective cleavage of the unactivated amide bonds at the C-side of the amino acid (Figure 16) [90–92].
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Pyrazine and Pyridazine Palladium(II)-Aqua Dimers

The complete hydrolysis of the amide bonds of peptides N-acetylated-L-histidylglycine
(Ac-L-His-Gly) and -L-methionylglycine (Ac-L-Met-Gly) at the C-terminal side of Met and His in the pH
range 2.0 < pH < 2.5 was catalyzed by two dinuclear palladium(II) complexes, [{Pd(en)Cl}2(l-pz)](NO3)2

and [{Pd(en)Cl}2(l-pydz)](NO3)2 at 37 ◦C. The hydrolysis is assisted by the formation of complexes
between the side chains of methionine and histidine and the metal complexes (Figure 17) [93–95].
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Platinum Complexes for the Cleavage of the Amide Bond

1H-NMR investigation of the cleavage reactions between various Pt(II) complexes of the type
[Pt(L)Cl2] and [Pt(L)(CBDCA-O,O′] (L = ethylenediamine-en; (±)-trans-1,2-diaminocyclohexane-dach;
(±)-1,2-propylenediamine-1,2-pn and CBDCA is the 1,1-cyclobutanedicarboxylic anion) and
the N-acetylated-L-methionylglycine dipeptide (MeCOMet-Gly) were reported by Djuran and
co-workers [93–96]. The comparison of the rate studies of these Pt complexes for the cleavage
of N-acetylated-L-methionylglycine dipeptide (MeCOMet-Gly) showed that the rate of hydrolysis
decreases with the increase in the steric bulk of the CBDCA and chlorido Pt(II) complexes (en > 1,2-pn
> dach) (Figure 18).
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Later, these [Pd(en)(H2O)2]2+ and [Pt(en)(H2O)2]2+ complexes were used for the cleavage of
tetrapeptide (MeCOMet-Gly-His-GlyNH2) in the pH range of 1.5–2.0 and at 60 ◦C. The study showed
that these complexes are highly selective for the cleavage of the amide bond at the C-terminal side of
methionine (Figure 19) [97]. The high selectivity for the Met-Gly amide bond compared to the other
amides is due to the high affinity of the Pt(II) and Pd(II) ions for the sulfur atom on Met. Two different
mechanisms for the cleavage of tetrapeptide at the C-terminus of Met residue by Pd complexes have
been proposed. One involves the direct coordination of the Pd complex with Met followed by the
cleavage. The second involves the formation of macrochelate with both His and Met followed by the
hydrolysis of the amide bond.
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Cis[Pd(dtco)(H2O)2]2+ leads to the selective cleavage of the amide bond at the C-terminal of Met
(Figure 20) [98]. Coordination of the metal complex promotes hydrolysis by two different mechanisms.
The first involves the formation of a six-membered complex by the chelation of a metal atom with
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both the sulfur of Met and the carbonyl of the amide bond, thus, activating the amide bond toward
cleavage by an external attack from water. This mechanism is favorable in the case of platinum(II)
promoters and substrates with smaller anchoring side chains. Second, the mechanism involves the
chelation of metal with sulfur only, followed by the internal attack of water molecules to the amide
bond. This mechanism is favorable with palladium(II) promoters and substrates with longer anchoring
side chains (Figure 20) [98].
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Figure 20. [Pd(dtco)(H2O)2]2+ mediated hydrolysis of amide bond.

Kostic et al. utilized the Pd(H2O)4 complex for the cleavage of decapeptide (Ac-AKYGGMAARA)
under acidic conditions (pH 2.3) at 60 ◦C [99]. The cleavage of the peptide bond took place at the Gly
residue next to Met on the N-terminal side and generated two fragments after 24 h. The Pd(H2O)4

complex binds to the S of the Met residue leading to the formation of two different complexes under
the reaction conditions (active and inactive), which are in equilibrium with each other (Figure 21).
The active complex led to the formation of two fragments through hydrolysis but the inactive complex
did not undergo any hydrolysis. The coordination of two amide nitrogen atoms in the inactive complex
quench the Lewis acidity of Pd(II), thus no hydrolysis was observed.

Next, Kostic et al. used this metal complex Pd(H2O)4 for the cleavage of the amide bond
under neutral conditions in different peptide substrates such as Gly-Met, Sar-Met, and Pro-Met.
This study showed that the rate of hydrolysis at a neutral pH is slow compared to that at a low
pH [44]. Interestingly, the complete cleavage of Sar-Met and Pro-Met was observed but no cleavage
was observed for Gly-Met at a neutral pH. This is due to the difference in the equilibrium position of
the Gly-Met compared to that of Pro-Met. In Gly-Met, equilibrium is more shifted towards the inactive
form at neutral pH due to the ability of Gly to form a strong coordinate bond with Pd. In contrast,
for the peptide containing Sar-Met or Pro-Met, the equilibrium is shifted towards the hydrolytically
active form because they are unable to form a strong coordination with Pd due to the tertiary amide of
the Pro or Sar residue (Figure 22).
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Figure 21. [Pd(H2O)4]2+ mediated hydrolysis of amide bond.
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In the case of Gly-Pro-Met, the hydrolysis of the amide bond can take place either through the
external or internal attack of water molecules depending upon the cis/trans conformation adopted by
proline (Figure 23). The ROESY NMR studies showed that the hydrolysis of the Gly-Pro-Met peptide
takes place by the external attack of water on trans-Gly-Pro [100].
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Overall, the Pd(H2O)4 complex is residue selective under acidic conditions and cleaves the second
amide bond upstream from the Met residue. However, the same complex is sequence-specific under
neutral conditions and cleaves the amide bond only at the Pro-Met or Sar-Met residue with no cleavage
observed at Gly-Met peptide (Figure 24).Molecules 2018, 23, x 18 of 43 
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Next, the same group utilized the Pd(en)(H2O)2 complex for the acidic hydrolysis of the B-chain
of bovine insulin containing two histidine residues. These complexes promoted the cleavage of the
second amide bond upstream from histidine. The detailed mechanistic analysis showed the selective
cleavage by the coordination of the Pd complexes with the histidine side chain and amidic nitrogen
followed by the internal attack of water on the amide bond (Figure 25) [101].
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Next, they used the β-cyclodextrin Pd complex for the cleavage of the amide bond at the first
amide bond upstream from the Pro-Phe sequence. The role of the β-CD complex was to bind to the
hydrophobic residue (Phe) in an aqueous medium followed by the activation of the amide carbonyl
group by the metal coordination, and the attack by the external water molecule leading to the cleavage
of the amide bond (Figure 26) [102].
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3.1.4. Artificial Metal Proteases

Suh et al. designed metal complexes for the cleavage of amide bonds in proteins at specific
locations [103–107]. These metal complexes are highly selective with their protein partners similar
to some natural proteases. They also demonstrated that the catalytic rate of hydrolysis increased by
the formation of the complex between the substrate and catalyst. This is achieved by increasing the
multinuclear metal centers, which provide extra metal centers as substrate binding sites. They showed
that the rate of hydrolysis of the myoglobin protein increased with the increase in the number of metal
centers in the mono (half-life for hydrolysis 24 h, Figure 27), dinuclear (half-life for hydrolysis 3.5 h),
and tetranuclear metal centers (half-life for hydrolysis 1.3 h) [103].
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They showed that the selectivity towards a specific protein was achieved by the addition of
organic pendants such as peptide nucleic acid (PNA), which are responsible for selective binding to a
particular protein. Overall, the goal of this research was to synthesize peptide-cleavage agents selective
for the hydrolysis of pathogenic proteins responsible for Alzheimer’s disease, type 2 diabetes mellitus,
and Parkinson’s disease.
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Aldehyde Pendant for the Cleavage of Proteins

Ammonium groups are abundant on the surface of proteins and form imine with aldehyde faster
than the peptide bond cleavage and, through this process, brings the reactive metal catalytic center
in close proximity to the protein/peptide chain (Figure 28). The rapid formation of imine makes
the attack of the metal center on the peptide bond an intramolecular process, thus, increases the
rate of hydrolysis. Based on this concept, several artificial metalloproteases have been developed by
incorporating an aldehyde handle close to the metal center and has been successfully been applied for
the faster cleavage of peptide bonds [104].
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Mb-Selective Artificial Protease

The catalyst for the cleavage of myoglobin (Mb) was designed by attaching the cyclen metal
complex containing Cu(II) or Co(III) to the peptide nucleic acid (PNA) monomers, which act as binding
sites for the Mb (Figure 29) [105]. Varieties of linkers were inserted between the PNA binding site
and the catalytic cyclen site for the formation of Mb-cleaving catalysts. MALDI-TOF MS showed
that the cleavage of the peptide backbone chain of Mb takes place at Leu89-Ala90. Various chelating
ligands were tested for determining the activity of the Mb-cleaving catalyst but only cyclen and its
triaza-monooxo analog showed efficient catalytic activity.
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Mechanism: The first step involves the binding of the carbonyl group of the amide to the Co(III)
metal center to form a CS complex (Figure 30). The selectivity of one amide carbonyl over the rest of
the amidic carbonyls is based on the other half of the catalyst, which is responsible for the recognition
of a particular protein and a particular site. This Co(III) carbonyl coordination activates the amidic
carbonyl for a nucleophilic attack by the hydroxide ion on the metal center, resulting in the formation
of tetrahedral intermediate T. This is followed by the collapse of the tetrahedral intermediate (T),
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resulting in the breakage of the amide bond to generate a peptide amine and corresponding peptide
acid [106].

Suh and co-workers showed that the cleaving capability of the Co(III)/Cu(II) complexes
of cyclen increased by the replacement of one nitrogen atom of cyclen with an oxygen atom.
The Co(III)-oxacyclen complexes (1-oxa-4,7,10-triazacyclododecane Co(III)) cleaved the proteins such
as BSA, HEWL, Mb, and bovine serum-globulin with a 4–14 times higher catalytic efficiency compared
to the Co(III)-cyclen complexes [106].
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PDF-Selective Artificial Protease

The catalyst for the cleavage of the protein, peptide deformylase (PDF), was obtained in a selective
manner by screening the library of catalysts (Figure 31). The catalyst cleaved the backbone peptide
chain of the PDF at position Gln152-Arg153. Docking simulations showed that multiple interactions
were responsible for the formation of a complex between the catalyst and PDF. Fifteen other proteins
were examined, but none of them underwent cleavage by this Co(III) complex, which further confirmed
the highly selective nature of these metal complexes [107].
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AmPs-Selective Artificial Protease

AmPs are amyloidogenic peptides or proteins which lack active sites and are related to diseases
such as Alzheimer’s and type 2 diabetes. Based on the above concept, Suh et al. synthesized various
other metal complexes for the selective cleavage of amide bonds in these proteins. The main advantage
of this work is that such amyloidogenic proteins cannot be targeted by conventional approaches due
to the lack of an active site (Figure 32) [108–110].
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Soares et al. utilized mononuclear copper(II) complexes [Cu(HL1)Cl2] and [Cu(L1)Cl] for the
cleavage of unactivated amide bonds of the proteins bovine serum albumin (BSA) and Taq DNA
polymerase, under mild pH and temperature conditions (Figure 33). The cleavage occurred at
the specific site on the solvent- exposed portions of the protein to generate particular proteolytic
fragments [111].
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3.2. The Non-Lewis Acid Reaction Mechanisms Based on the N→O Rearrangement

In some cases, metal catalysts showed a high rate of hydrolysis of the peptide backbone chain
at the N-terminus of the serine and threonine residues. Such a cleavage was catalyzed by the N→O
rearrangement and does not employ the Lewis acid properties of the metal atom. Based on the
proposed mechanism, the first step involves the formation of the Ni(II) complex with 4 N of the
backbone amide chain and the side chain of the His residue with the (Ser/Thr)-Xaa-His sequence
(Figure 34). The second step involves the N→O rearrangement from the side chain of the Ser or Thr
that transfers the N-terminal R1 moiety from the peptide bond to form an ester bond. This is followed
by the hydrolysis of the resulting ester, leading to the formation of two reaction products, the R1
peptide acid and the Ni(II) complex with the peptide [112,113].
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Scandium(III) Triflate-Promoted Serine/Threonine Selective Peptide Bond Cleavage

Kanai et al. reported the hydrolysis of the peptide bond at the N-terminus of Ser/Thr residue
by using scandium triflate. This chemical cleavage relies on Sthe c triflate mediated N to O acyl
rearrangement followed by the subsequent hydrolysis of the ester by heating it at 80–100 ◦C (Figure 35).
Complete hydrolysis took place in 18–20 h. The authors have used this approach for the cleavage of
various peptides including posttranslationally modified (PTM) peptides and the cleavage of native
protein Aβ1-42, which is closely related to Alzheimer’s disease [114].
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4. Organic Molecules for Activation of Amide Bonds

We have summarized different kinds of nonmetal-based methods, their mechanisms of hydrolysis
of unactivated peptide bonds and the point of cleavages in Table 3.
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Table 3. Organic molecules based hydrolysis of peptide bonds.

Entry Organic Molecules Method of Hydrolysis Point of Cleavage Ref.

1 Phenyl
isothiocyanate

Through 5 membered cyclic
phenylisothiocyanate intermediate

N-terminal side
of peptide [115]

2 Cyanogen bromide Through 5 membered iminolactone C-terminal side of Met [116]

3 2-Nitro-5-thiocyano
benzoic acid Through 5 membered thialactone N-terminal side of Cys [117]

4 2-iodosobenzoic acid Through iminospirolactone C-terminal side of Trp [118,119]

5 TBC Through Oxindole C-terminal side of Trp [118,119]

6 N-amidination Through 5 membered cyclic amidine ring N-terminal side
of peptide [120]

7 Protecting goups
(Table 4) Lactonization strategy C-terminal side

of peptide [121–127]

8 H2O2 responsive
protecting groups Lactonization strategy C-terminal side

of peptide [128]

9 PyBroP Glutamic acid selective activation through
pyroglutamyl imide N-terminal side of Glu [129,130]

10 DIB Hofmann rearrangement mediated
N-acylurea intermediate N-terminal side of Asn [131]

11 DSC Cyclic urethane amide activation N-terminal side of Ser,
Thr, Cys and Glu [132–136]

12 o-NBnoc A photo responsive amide cleavage
through succinimide ring C-terminal side of Asn [137–142]

13 Cu-organo radical
conjugate

Aerobic chemoselective oxidation of Ser
followed by oxalimide formation N-terminal side of Ser [143]

14 TFA/H2O N-acyl group mediated oxazolinium specie C-terminal side
of peptide [144]

15 Hydrazine hydrate Hydrazinolysis accelarated by addition of
ammonium salts N-terminal of peptide [145]

16 N-Mecysteine Through oxazolinium ion C-terminal side
of N-MeCys [146]

17 Acylated N-MeAib Through oxazolinium ion C-terminal side
of N-MeAib [147]

4.1. N-Terminal Cleavage of Amide Bonds

4.1.1. Edman’s Degradation

This approach utilizes phenyl isothiocyanate for the cleavage of the peptide bond at the
N-terminus. Phenyl isothiocyanate reacted with an uncharged N-terminal amino group, under mildly
alkaline conditions, to form a cyclic phenylisothiocyanate derivative, which undergoes cleavage as a
thiazolinone derivative under acidic conditions (Figure 36). We proposed that the activation of an
amide bond is due to the formation of the five-membered cyclic phenylisothiocyanate intermediate which
creates a twist in the amide bond, thus preventing the amidic nitrogen from forming a resonating
structure and making it susceptible towards hydrolysis [115].
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4.1.2. Cyanogen Bromide for Cleavage at Met Residue

Cyanogen bromide led to the cleavage of the peptide bond at the C-terminus of the methionine
residue in a selective manner. The first step involves the nucleophilic attack of the sulfur of methionine
on cyanogen bromide (Figure 37) [116]. This displaces the bromide from cyanogen bromide, followed
by the attack of the amide carbonyl on the cyano group, resulting in the formation of the five-membered
ring, iminolactone, comprising a double bond in the ring between nitrogen and carbon. This double
bond results in a rigid ring conformation, thus activating the amide bond towards cleavage at the
C-terminus of Met, resulting in the generation of homoserine lactone. This approach has widely been
utilized for the sequencing of proteins [116].
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4.1.3. 2-Nitro-5-Thiocyano Benzoic Acid for Cleavage at Cys

2-Nitro-5-thiocyano benzoic acid led to the hydrolysis of the amide bond at the N-terminal side
of the cysteine residue. The first step is the cyanylation of the side chain of cysteine on a peptide by
2-nitro-5-thiocyano benzoic acid, which is followed by the attack of the cysteine amidic nitrogen to the
cyano group on the side-chain of cysteine, resulting in the formation of the 5-membered thiolactone
ring. This, in turn, activates the amide bond towards hydrolysis under basic conditions (Figure 38).
This is again due to the inability of cysteine amidic nitrogen in a thiolactone to form a resonating
structure with the carbonyl of peptide bond [117].
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4.1.4. 2-Iodosobenzoic Acid for Cleavage at Trp

2-Iodosobenzoic acid has been used for the hydrolysis of the amide bond at the C-terminal side
of the Trp residue. The mechanism of the cleavage is a two-step process. The first step involves
the oxidation of the side-chain of tryptophan by 2-iodosobenzoic acid followed by the nucleophilic
attack from the neighboring carbonyl group of the amide bond, leading to the formation of an
iminospirolactone which hydrolyzes the peptide chain in the presence of water (Figure 39) [118,119].
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4.1.5. TBC for Cleavage at Trp

Tryptophanyl peptide bonds underwent selective cleavage by 2,4,6-tribromo-4-
methylcyclohexadienone (TBC) at the C-terminus (Figure 40). Tyrosyl and histidyl peptide
bonds which are usually cleaved by other brominating agents (such as α-bromosuccinimide,
α-bromoacetamide, etc.) are stable to this reagent. Additionally, other amino acids, which are sensitive
to oxidation, react with TBC but do not cleave the peptide bonds. This method was successfully
applied to a variety of peptides and proteins [118,119].

According to the reaction mechanism suggested by Patchornik et al. (1960), oxidative bromine
participates in the modification-cleavage reaction [118,119]. Two equivalents of bromine first brominate
the indole nucleus followed by a spontaneous debromination through a series of oxidation and
hydrolysis reactions (Figure 40). These reactions led to the formation of an oxindole derivative,
which cleaves the peptide bond.
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4.2. N-Amidination for Cleavage of the N-Terminal Amide Bond

Hamada et al. reported the cleavage of the amide bonds by the N-amidination of peptides.
The N-amidination of peptides leads to the formation of a cyclic moiety which resulted in the cleavage
of the amide bond at room temperature (Figure 41) [120]. The rate of cleavage was slow under ambient
conditions (PBS buffer, pH 7.4) at 37 ◦C with t1/2 = 35.7 h, but a rapid cleavage was observed under
basic conditions (2% NaOH aq) with t1/2 = 1.5 min. To evaluate the broad applicability of this cleavage
reaction, a series of peptides with different amino acids at the N-terminus such as the Lys, Glu, Ser,
Cys, Tyr, Val, and Pro residues were cleaved with t1/2 values from 1 min to 10 min. A slightly slow
cleavage was observed with bulky amino acids at the terminus such as Val or Pro, which might be
hindering the path of cyclization.
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N-amidinated peptide with a Cys residue at the N-terminus also generated a five-membered ring,
thiazolidine by path b (intermediate B) which did not lead to any cleavage, therefore, the t1/2 of the
peptide with Cys at the N-terminus in 2% NaOH aq at 37 ◦C was 3.4 min (slower than with other
amino acids at the N-terminus) (Figure 42) [120].Molecules 2018, 23, x 28 of 43 
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4.3. Lactonization Mediated Cleavage of Amide Bonds

Otaka et al. developed an auxiliary with special protecting groups (PGs), which is capable of
forming a lactone with the carbonyl of an amide bond, resulting in the cleavage of the amide bond
(Table 4) [121–128]. Depending on the nature of the protecting groups, an amide bond cleavage can be
initiated in peptides by using different responsive reagents for the deprotection of PGs (Table 4). Table 4
showed various PGs and the corresponding responsive reagents for their deprotection. The thiol
responsive reagent was applied for the cleavage of the PNA/DNA complex using thiol-responsive
protecting groups [121–128].

Table 4. Lactonization mediated cleavage of amide bonds.
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NO2 H H
NO2 OMe OMe
H OTBDPS H
H NO2 H

Thiol 4-nitrobenzenesulfonyl - - -

Phosohatase phosphate - - -

4.4. Hydrogen Peroxide-Induced Amide Bond Cleavage

Later, the hydrogen peroxide (H2O2)-responsive protecting group was introduced to the amino
acid. This protecting group contains a boronate or boronic acid moiety which underwent deprotection
in oxidative stress because of the release of hydrogen peroxide followed by the formation of lactone
and the cleavage of the peptide bond (Figure 43) [128].Molecules 2018, 23, x 29 of 43 

 

 
Figure 43. Hydrogen peroxide responsive probes. 

4.5. Glutamic Acid Specific Activation of Amide Bonds 

We have also reported a new method for the site-specific cleavage of peptide bonds at glutamic 
acid under physiological conditions [129,130]. The method involves the activation of the backbone 
peptide chain at the N-terminal side of glutamic acid by the formation of a pyroglutamyl imide (pGlu) 
moiety using bromotripyrrolidinophosphonium hexafluorophosphate (PyBroP) (Figure 44). This 
activation increases the susceptibility of the peptide bond toward various nucleophiles including 
thiol and water (Figure 44). We showed that this pyroglutamyl imide activated peptide chain 
underwent the complete cleavage of the peptide bond under neutral buffer conditions (pH 7.5). It 
was observed that the rate of hydrolysis increase under basic pH conditions (pH = 10.5). Although 
the Asp has a carboxylic group on the side chain, no cleavage was observed under the reaction 
conditions. Jensen et al. exposed the pGlu activated peptide bond towards thiol, resulting in the 
formation of peptide thioesters [129,130]. A noted feature about this approach is that it leads to the 
formation of epimerization free peptide acids and peptide thioesters. This method is highly specific 
and exhibits a broad substrate scope including the cleavage of bioactive peptides with unnatural 
amino acids, which are unsuitable substrates for enzymes. 

FmocHN
OH

O

O

R

R = B(OH)2, B(MIDA)

B(MIDA) =

O
OB

N

O
O

H
N

GAQSGY

O

O

OH

NH2
RYDRH

H
N

GAQSGY

O

OH

NH2
RYDRH

H
N

O

RYDRH
O

+

GAQSGY NH2H

Figure 43. Hydrogen peroxide responsive probes.



Molecules 2018, 23, 2615 29 of 43

4.5. Glutamic Acid Specific Activation of Amide Bonds

We have also reported a new method for the site-specific cleavage of peptide bonds at glutamic
acid under physiological conditions [129,130]. The method involves the activation of the backbone
peptide chain at the N-terminal side of glutamic acid by the formation of a pyroglutamyl imide
(pGlu) moiety using bromotripyrrolidinophosphonium hexafluorophosphate (PyBroP) (Figure 44).
This activation increases the susceptibility of the peptide bond toward various nucleophiles including
thiol and water (Figure 44). We showed that this pyroglutamyl imide activated peptide chain
underwent the complete cleavage of the peptide bond under neutral buffer conditions (pH 7.5).
It was observed that the rate of hydrolysis increase under basic pH conditions (pH = 10.5). Although
the Asp has a carboxylic group on the side chain, no cleavage was observed under the reaction
conditions. Jensen et al. exposed the pGlu activated peptide bond towards thiol, resulting in the
formation of peptide thioesters [129,130]. A noted feature about this approach is that it leads to the
formation of epimerization free peptide acids and peptide thioesters. This method is highly specific
and exhibits a broad substrate scope including the cleavage of bioactive peptides with unnatural amino
acids, which are unsuitable substrates for enzymes.Molecules 2018, 23, x 30 of 43 
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4.6. Asparagine Selective Cleavage of Amide Bonds

Kanai et al. described the method for the site-selective chemical activation of peptide bonds for
hydrolysis at the asparagine residue using diacetoxyiodobenzene (DIB) [131]. The reaction of the
side-chain of Asn with DIB leads to the formation of isocyanate by Hofmann rearrangement. This is
followed by the attack of the N-terminal amidic nitrogen of the peptide backbone chain, affording
a five-membered N-acylurea intermediate, thus activating the amide bond towards hydrolysis
(Figure 45). Asn-selective peptide bond cleavage was proceeded in an aqueous neutral solution
at 37 ◦C and exhibited a broad substrate scope. The Gln-site was not cleaved under the reaction
conditions. Specifically, this method is applicable to peptides containing unnatural amino acids and/or
posttranslational modifications where enzymatic cleavage is not very efficient.
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4.7. Cyclic Urethane Mediated Activation of Amide Bonds

We have developed a method for the cleavage of the amide backbone chain at the N-terminal side
of Ser, Thr, and Cys by the formation of a five-membered cyclic urethane moiety [132]. The formation
of the cyclic urethane moiety with an amide backbone makes the amidic carbonyl group susceptible
to nucleophilic attack. This is presumably due to the twist in the backbone amide chain caused by
the cyclic urethane moiety. Thus, it was no longer able to form a resonating structure. To achieve
this goal, we screened various carbonylating reagents and a maximum conversion to cyclic urethane
moiety was achieved with N,N-disuccinimidyl carbonate (DSC). We proposed that the hydroxymethyl
group of the side chain of Ser reacted with DSC to generate an activated intermediate, A, which then
undergoes nucleophilic displacement by the amidic nitrogen on the N-side of serine through the
path to generate a five-membered cyclic urethane intermediate B (Figure 46). The formation of the
cyclic urethane intermediate B makes the amide bond susceptible to nucleophilic attack and led to
the cleavage of the amide bond in neutral aqueous conditions (room temp, pH 7.5, 12 h). There is a
possibility of nucleophilic displacement of the intermediate A by the amidic nitrogen through path b.
This could lead to the formation of six-membered ring B′, but we did not observe the formation of any
six-membered ring as analyzed by NMR studies.
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The side chain of Glu on reaction with DSC also led to the formation of a pyroglutamyl
imide moiety with an amide backbone chain, thus making it susceptible to nucleophilic attack
(Figure 47) [132]. We have used this approach for the selective hydrolysis of peptides/proteins
at the N-terminus of Ser, Thr, Cys, and Glu. This method cleaved various bioactive peptides
containing posttranslational modifications (e.g., N-acetylation and -methylation) and mutations
(D-and β-amino acids), which are not suitable substrates for enzymes, thus exhibited a broad
substrate scope. We have also used this approach for the synthesis of a variety of functionalized
C-terminal peptides such as esters, amides, alcohols, and thioesters (Figure 48) by exposing the
cyclic urethane activated peptide towards various nucleophiles such as alcohols, amines, reducing
agents, and thiols [133,134]. The attractive feature of this approach is that it leads to the formation of
epimerization free C-functionalized peptides.Molecules 2018, 23, x 32 of 43 
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Later, this cyclic urethane amide-activation approach was applied for the cleavage of a variety of
cyclic and lasso peptides obtained from nature to determine their sequence, which is difficult to be
determined by conventional approaches (Figure 49) [135,136]. We have also applied this method for
the synthesis of a peptide-based molecular machine (rotaxanes) for the first time (Figure 50) [135,136].
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4.8. Intein-Inspired Amide Cleavage Chemical Device

A photoresponsive device was developed for the cleavage of the amide bond at the C-terminus of
the Asn residue [137]. This approach was inspired by intein-mediated protein splicing and its chemical
environment was mimicked by the incorporation of geminal dimethyl groups and a secondary amine
on the asparagine scaffold.

The secondary amine acts as an intramolecular base, which enhances the nucleophilicity of
the amide nitrogen (Figure 51). The geminal dimethyl groups led to a Thorpe-Ingold effect,
which enhances the intramolecular attack, thus assisting in the formation of the succinimide
ring [138–140]. The o-nitrobenzyloxycarbonyl (o-NBnoc) masks the basic character of the secondary
amine [141,142], thus leading to the photo triggered cleavage of an amide bond by the deprotection of
the secondary amine unit containing the o-nitrobenzyloxycarbonyl group.
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4.9. Serine-Selective Aerobic Cleavage of Peptides

Kanai et al. reported a use of the water-soluble copper-organoradical conjugate for the selective
cleavage of the peptide bond at the N-terminus of a serine residue under mild conditions and at
room temperature [143]. They used this approach for the selective cleavage of a variety of different
peptides/proteins containing D-amino acids or sensitive disulfide pairs.

Ser-selective cleavage of the peptide bond was initiated by the aerobic chemoselective oxidation
of the hydroxymethyl moiety of Ser to a formyl group (A) (Figure 52). This produced a β-formyl
glycineamide intermediate B which, on further oxidation, led to the formation of oxalamide C by
undergoing oxidative deformylation. Oxalamide C then underwent hydrolysis under mild conditions
because the carbonyl groups of the oxalamide are more electrophilic than those of simple amides,
resulting in the formation of the cleaved fragments D and D′. By using molecular oxygen as a
terminal oxidant, water and a C1 molecule (possibly HCO2H) become stoichiometric side products.
This strategy is widely distinct from Lewis acid, promoted by the Ser-selective peptide hydrolysis
through N-to-O rearrangement.

4.10. Hydrolysis of Amide Bonds by the Formation of Oxazolinium Specie: Function of Acyl Protecting Group

Peptides containing a simple N-acyl group activates the amide bond four bonds away from an acyl
group for cleavage under acidic conditions [144]. First, TFA leads to the protonation of amide carbonyl
followed by the nucleophilic attack from the oxygen of the acyl carbonyl to generate a five-membered
oxazolinium specie A in the peptide chain. Second, the collapse of the oxazolinium intermediate A
leads to the cleavage of an unactivated amide bond (Figure 53).

The nature of the aromatic group, G, was responsible for the rate of hydrolysis of the peptide bond.
Electron-donating groups increase the rate of hydrolysis whereas electron withdrawing substituents
decrease it (Figure 53).
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4.11. Hydrazinolysis for the Cleavage of Amide Bonds

The hydrazinolysis of unactivated amide bonds was accelerated by the addition of ammonium
salts. The reaction proceeds at 50–70 ◦C to give peptide cleavage products and exhibits a broad
substrate scope that out-performs existing amide bond cleavage reactions [145]. This approach was
applied for the cleavage of the peptide bonds without racemization at the α-position of the amino
acids (Figure 54). It was also applied to the cleavage of the N-acetyl group from the amino sugar.
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4.12. Amide Bond Cleavage of the N-Methylcysteinyl Peptide

Tam et al. developed a selective bi-directional peptide bond cleavage approach utilizing
N-methylcysteine (MeCys) in the Xaa-MeCys-Yaa peptides (Xaa and Yaa, non-cysteine residues) [146].
Under strong acidic conditions, peptide Xaa-MeCys-Yaa led to the formation of an oxazolinium
intermediate, resulting in the cleavage of the Xaa-MeCys bond. The oxazolinium intermediate was
later trapped by thiocresol (TC) to form a Xaa-MeCys-TC thioester (Figure 55). The replacement of
MeCys by Cys residue did not result in the peptide bond cleavage, suggesting the important role of
N-methylation in MeCys residue for the formation of oxazolone.Molecules 2018, 23, x 36 of 43 
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4.13. N-MeAib Induced Unusual Cleavage of Amide Bonds

Peptides containing acylated N-methyl-aminoisobutyryl (NMeAib) residues showed unusual
cleavage of amide bonds under acidic conditions. The cleavage takes place at the C-terminal side
of the NMeAib residue (Figure 56) [147]. X-ray diffraction studies of the NMeAib containing
molecules showed that the oxygen atom of the carbonyl group of the preceding residue is close
to the carbonyl carbon of the NMeAib residue, thus acting as an internal nucleophile forming a
tetrahedral intermediate. Once this tetrahedral intermediate was formed, lone pair electrons on the
nitrogen of the phenylalanine were no longer be able to form resonating structures with the carbonyl
group of NMeAib. In fact, the phenylalanine nitrogen becomes a proton acceptor like the amines,
which resulted in the cleavage of the amide bond followed by the removal of phenylalanine and the
formation of an oxazolinium ion intermediate, which further reacts with water to form a carboxylic
acid product.
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5. Conclusions

This mini-review highlights the methods for the activation of unactivated amide bonds in
biomolecules. This review further highlights the application of these methods in the sequencing
of proteins and the synthesis of peptide acids, thioesters, alcohols, and amides. These studies showed
that there is still a lot to learn from enzymes catalyzed pathways and how we can develop enzyme
mimetics for catalyzing the cleavage of unactivated and highly stable amide bonds at particular
residues in a selective manner. We assume that these enzyme mimetics can have potential applications
in various fields.
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