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Abstract

The blood-brain barrier (BBB), crucial for central nervous system (CNS) homeostasis, poses challenges for drug delivery
in CNS diseases due to selective permeability. Because of this difficulty, there are limited treatments developed for CNS
diseases. As a solution, computational models can be implemented in treatment development to enable rapid screening of
drug permeability, saving time and resources. This study explores machine learning, deep learning, and transfer learning
models to predict the BBB permeability of drug molecules, validated through an in vitro assay known as Parallel Arti-
ficial Membrane Permeability Assay-BBB (PAMPA-BBB). Using the Blood-Brain Barrier Database (B3DB) of ~ 8,000
compounds of known BBB permeability, classification models including support vector machines (SVMs), deep neural
networks (DNNs), direct message passing neural networks (D-MPNNs), and transfer learning with quantum chemical
properties were developed. Experimental validation with 18 compounds from the Emory Enriched Bioactive Library
(EEBL), a library containing 1,018 FDA-approved pharmacologically active compounds of known activity, highlighted
PAMPA-BBB as a robust validation method. The SVM model with combined 2D RDKit and Morgan fingerprint molecular
representation achieved high performance (accuracy: 89.08%) on the B3DB test set. The best-performing models for the
18 EEBL compounds were transfer learning models. In particular, the model trained on the QM9-extended polarizability
property correctly classified 17 out of 18 compounds, while the model trained on the QM9-extended dipole moment
property achieved correct classification across all 18 experimental compounds. Additional analyses demonstrated that QC-
based transfer learning provides complementary predictive value beyond traditional molecular descriptors such as LogP
and molecular weight. QC-pretrained models achieved higher accuracy and ROC-AUC on both the B3DB and external
PAMPA test sets, with performance remaining robust even after descriptor ablation. Moreover, QC-pretrained models
outperformed the baseline of P-glycoprotein (P-gp) inhibition, underscoring the unique contribution of quantum-derived
representations to BBB permeability prediction. Therefore, this study motivates the synergy of computational and experi-
mental methods in enabling faster, more cost-effective, and targeted identification of CNS-active or CNS-sparing drugs.
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Introduction

The blood-brain barrier (BBB) is a highly selective, pro-
tective boundary of the central nervous system (CNS) that
plays a critical role in maintaining the brain’s microenviron-
ment [1]. It functions to shield the brain from harmful sub-
stances, pathogens, and toxins present in the bloodstream
while allowing essential nutrients and molecules to pass
through. Its protective mechanisms include tight junctions,
active transport systems such as efflux pumps, and enzy-
matic barriers [2]. While the BBB is highly effective, it also
poses challenges for drug delivery, as it restricts the entry
of most therapeutic agents [3—5]. The inability of drugs to
cross the BBB creates a major hurdle in developing treat-
ments for neurological conditions, such as Alzheimer’s
disease, Parkinson’s disease, brain and spinal cord tumors,
and epilepsy, where effective drug delivery to the brain is
essential for therapeutic success [6]. Understanding and
overcoming these challenges is a critical focus of modern
drug development.

Laboratory experiments based on cell-based methods
are the current standard for accurately determining whether
drugs can effectively cross the BBB, but they are also time
consuming and labor intensive [7]. For reference, cell cul-
ture supplies and equipments cost thousands of dollars and
require delicate and time intensive experimental proce-
dures [8]. In recent years, machine learning (ML) and deep
learning (DL) have become increasingly effective tools for
predicting BBB permeability at virtually limited cost [9,
10]. This approach has the potential to significantly accel-
erate the drug discovery process by allowing researchers
to screen thousands of compounds and prioritize promis-
ing candidates early on, saving both resources and time.
In 2020, Singh et al. developed random forest, multilayer
perceptron, and sequential minimal optimization models
using a small dataset of 605 compounds and achieved an
accuracy of 86.5% on an external set of 1,566 compounds
[11]. The DeePred-BBB study applied ML (support vec-
tor machines, k-Nearest Neighbor, Random Forest, naive
Bayes) and DL (deep neural network, convolutional neu-
ral network 1-dimension, convolutional neural network by
transfer learning) algorithms to a dataset of 3,605 diverse
compounds [12]. They discovered that a DNN model with
three layers (depth) having 200, 100, and 2 nodes each and
integrated calculated features from the open-source Padel
tool was most accurate.

In 2021, Blood-Brain Barrier Database (B3DB), the larg-
est benchmark dataset for BBB permeability to date, was
introduced. Compiled from 50 published sources and con-
sisting of 7,807 compounds, it was designed to address the
limitations of previous studies, which were constrained by
small datasets and limited chemical diversity [13]. While
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the literature had shown significant progress in applying
ML and DL models to predict BBB permeability, there was
now the opportunity to improve upon prior approaches and
explore new methodologies that leverage the expanded
chemical diversity of B3DB. Following its release, an ML-
based classification read-across structure-activity relation-
ship linear discriminant analysis model using the B3DB
dataset emerged, highlighting the role of lipophilicity,
electronic effects, and steric factors in facilitating BBB
prediction [14]. Using a validation set of compounds from
the DrugBank dataset, which had undergone experimental
assessments for BBB penetration, their model achieved a
predictive accuracy of 0.673, precision of 0.928, F-measure
of 0.757, and balanced accuracy of 0.723, results compa-
rable to the performance of the LightBBB online server
[15]. Also utilizing the B3DB dataset, the transformer-based
model MegaMolBART combined with an XGBoost classi-
fier demonstrated improved results over traditional machine
learning approaches achieving an accuracy of around 0.83
on the B3DB test set [16]. These studies have demonstrated
the utility of the B3DB dataset; however, there is still poten-
tial to further improve model accuracy and ensure robust
generalizability to novel compounds.

Transfer Learning is a powerful ML technique that has
been highly successful in various domains, including natu-
ral language processing [17], computer vision [18], and
speech recognition [19]. By leveraging knowledge from a
pre-trained model on one task, it enhances performance on a
different but related task. In drug discovery, transfer learning
has been used to predict molecular properties and activities,
including physiological, biophysical, and physicochemical
characteristics [20]. However, its application to BBB per-
meability prediction remains largely unexplored. Quantum
chemical properties have been shown to augment DL mod-
els for predicting molecular properties, including absorp-
tion, distribution, metabolism, and excretion (ADME),
which are critical in modern drug discovery [21]. But no
prior work has integrated quantum chemical properties with
BBB permeability prediction using transfer learning.

In our study, we developed a novel transfer learning
approach that leverages quantum chemical (QC) property
as the source domain to predict the binary classification of
BBB permeability, validating its performance on an exter-
nal dataset derived from in vitro experiments. QC properties
including electronic, topological, and geometric descriptors
are anticipated to be useful in BBB prediction due to their
relation to the fundamental factors influencing BBB trans-
port including logD, pKa, rate of transport, binding affin-
ity with p-glycoproteins [22]. Moreover, transfer learning
is particularly powerful when large, well-characterized
datasets (such as QC properties) are leveraged to gener-
ate predictions in a lower-data domain (BBB permeability)
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[23]. We pretrained deep neural network-based models on
QC properties using the QM9 and QM9-extended datasets,
then fine-tuned them for BBB permeability prediction using
the B3DB dataset. To further evaluate our approach, we
compared our transfer learning models against traditional
machine learning and deep learning methods, including sup-
port vector machines (SVM), deep neural networks (DNN),
and direct message passing neural networks (D-MPNN),
using the B3DB dataset. To assess the ability of these mod-
els to generalize beyond the B3DB chemical space, we
curated an external test set of compounds. We selected 18
compounds from the Emory Enriched Bioactive Library
(EEBL) with limited documentation of their BBB perme-
abilities in the literature and performed in vitro experiments
with Parallel Artificial Permeability Assay-BBB (PAMPA-
BBB) designed to simulate the passage of drugs across BBB
membranes using dried lipids in a system of 96-well plates.
The PAMPA assay serves as a more efficient alternative to
traditional, often expensive and time-consuming cell-based
methods, and is used as the ground truth in this study. Ulti-
mately, the synergy of computation and experimentation
creates a self-improving system in which the continuous
collection of new data allows for refining and improving
model accuracy over time. This iterative process accelerates
drug discovery, enabling faster, more cost-effective, and tar-
geted identification of CNS-active or CNS-sparing drugs.

Results

The B3DB dataset was used for model development and
divided into a 75/25 train/test split. These splits were used
to build a D-MPNN model as implemented in Chemprop
(https://github.com/chemprop)®. For the other models,
molecular representations including “feature set 17, 2D
RDKit descriptors, Morgan fingerprints, combined 2D
RDKit descriptors and Morgan fingerprints, and Mol2Vec
were computed. The descriptor set, which we refer to as
“feature set 1” consists of molecular weight (MW), parti-
tion coefficient (LogP), topological surface area (TPSA),
and number of hydrogen bond donors (HBD). These were
selected based on the CNS drug space as defined by the
6 physicochemical properties: calculated log partition

Table 1 Datasets for BBB permeability and QC property prediction

coefficient (ClogP), calculated log distribution coefficient
(ClogD), MW, TPSA, HBD, acid dissociation constant
(pka). For transfer learning, the source domain models were
built first with the QM9 and QM9-extended datasets prior to
the fine-tuning of the second model with the B3DB data [21,
24]. Details on the datasets used in this study are provided
in Table 1. Model performances were assessed using the fol-
lowing metrices: accuracy, precision, recall, F1-score, and
the area under the receiver operating characteristic (ROC)
curve (AUC). The overall workflow applied in this study is
illustrated in Fig. 1.

Evaluation of model performances on the B3DB test
set

Molecular representation plays a critical role in model per-
formance [25, 26]. Different representations encode dif-
ferent aspects of chemical information, capturing local to
global properties, and directly impacting the model’s ability
to learn meaningful relationships. To gain insight into which
representations worked best depending on the complexity of
the associated model, we evaluated several molecular repre-
sentations, including molecular descriptors, Morgan finger-
prints, combination of molecular descriptors and Morgan
fingerprints, and learned vector representations of molecular
substructures (Mol2Vec), across several machine learning
algorithms. As depicted in Fig. 2, SVMs achieved the high-
est overall performance on the B3DB test set with the com-
bined RDKit and Morgan fingerprints (accuracy: 89.08%,
F1: 0.92, AUC: 0.877). SVMs also achieved high perfor-
mance with the 208 RDKit computed 2D physicochemical
descriptors (accuracy: 87.96%, F1: 0.91, AUC: 0.866) and
Mol2Vec vector representations (accuracy: 87.7%, F1: 0.91,
AUC: 0.861), but lost performance with Morgan fingerprints
(accuracy: 83.18%, F1: 0.88, AUC: 0.771) and the simpler
initial descriptor set, feature set 1 (accuracy: 82.47%, F1:
0.87, AUC: 0.794). For DNNs, model performance was
consistent across all representations involving 2D physi-
cochemical properties, Morgan fingerprints, and their com-
bination, with accuracies of 86.99%, 86.13%, and 87.35%
respectively, but had lower performance with Mol2Vec
(42%). The D-MPNNs achieved better performance with
hyperparameter optimization (accuracy: 88.01%) and did

Name Task Used for training or testing Data set size Elements covered No. Heavy atoms
B3DB BBB+/BBB- Both 7,807 CNOFSCIBr 1-136

QM9 QC property Training 133,885 CNOF 1-9
QM9-extended QC property Training 153,716 CNOFSCI 1-9

Emory Test BBB+/BBB- Testing 18 CNOFSCIBr 645

B3DB was used in training and testing for model development for BBB permeability prediction. QM9 and QM9-extended datasets were used
for source domain model development in the first half of transfer learning. Emory Test consists of the 18 compounds selected to run through

PAMPA and validate the computational models
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Fig. 1 Illustration of the work-
flow applied in this study.

The B3DB dataset was split into
a random train/test 75/25 split. To
achieve a more balanced dataset,
we applied the oversampling

B3D3 Dataset
(7807 Compounds)

4956 BBB+ Compounds 2851 BBB- Compounds

strategy to the training split. A 75% | 25%

D-MPNN model was built as |
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set 17, 2D RDKit, Morgan
fingerprints, combined 2D RDKit
and Morgan fingerprints, and
Mol2Vec were computed. For
the transfer learning models,

the source domain models were

—

Compute Molecular Representation

built first with the QM9 and
QM09-extended datasets prior
to the fine-tuning of the second
model with the B3DB data. The

QC properties used were dipole
moment, polarizability, HOMO,
LUMO, gap, electronic spatial
extent, ZPVE, and heat capacity.
Created with Biorender.com
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Fig. 2 Model performances on the B3DB test set.

The models shown here represent the top-performing ones on the
B3DB test set, evaluated using three key metrics: accuracy, F1 score,
and ROC-AUC. SVMs achieved the highest overall performance with

not demonstrate any significant improvement from RDKit
feature concatenation to their learned molecular representa-
tion (accuracy: 87.75%).

For QM9-based transfer learning, the source QC task of
polarizability with the initial descriptor set (feature set 1) as
representation, achieved predictive performance of 80.74%
accuracy and dipole moment of 81.00% on the B3DB test
set (Table 2). This descriptor set (feature set 1) achieved
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ROC-AUC

the combined RDKit and Morgan fingerprints. Significant difference
was found between SVM (Rdkit feat + FP) and QM9 TL — mu (Feature
set 1) (*p<0.05). Error bars express binomial confidence interval at
95% confidence level.

consistent performance across all QC properties. For trans-
fer learning models based on the QM9-extended source
domain, the best QC properties to offer transfer learning
capability with the initial descriptor set (feature set 1) as
representation were polarizability (79.88% accuracy on the
B3DB test set), dipole moment (81.10%), HOMO (79.98%),
LUMO (80.23%), gap (81.91%), and ZPVE (81.40%). Over-
all, the transfer learning models had improved performance
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Table 2 Model performances on the B3DB test set. This table outlines the performances of several molecular representation and model combina-
tions (feature set 1, 2D RDKit, Morgan fingerprint, Rdkit feat+FP, and Mol2Vec) on the B3DB test set. Metrices include accuracy, F1 score, and

ROC-AUC
Model Molecular Representation Accuracy F1 Score ROC-AUC
SVM (grid search hyper opt) Feature set 1 0.8247 0.87 0.7943
2D RDKit 0.8796 0.91 0.8661
Morgan fingerprint 0.8318 0.88 0.7716
Rdkit feat+FP 0.8908 0.92 0.8774
Mol2Vec 0.8770 0.91 0.8619
DNN [4] Feature set 1 0.8232 0.86 0.805
2D RDKit 0.8699 0.9 0.8683
Morgan fingerprint 0.8613 0.89 0.8503
Rdkit feat+FP 0.8735 0.9 0.8669
Mol2Vec 0.4200 0.89 0.8413
MPNN, hyperopt Learned 0.8801 0.908 0.8620
MPNN Learned 0.8780 0.905 0.8669
MPNN +RdKit features Learned 0.8775 0.906 0.8619
QMO TL - alpha Feature set 1 0.8074 0.86 0.7752
2D RDKit 0.6611 0.73 0.6479
Morgan fingerprint 0.7246 0.81 0.6419
Rdkit feat+FP 0.6662 0.79 0.5458
Mol2Vec 0.6936 0.78 0.6349
QMO TL - mu Feature set 1 0.8100 0.86 0.7842
2D RDKit 0.7678 0.82 0.7563
Morgan fingerprint 0.7119 0.77 0.6889
Rdkit feat+FP 0.7348 0.81 0.6851
Mol2Vec 0.7774 0.83 0.742
QM9 TL - HOMO Feature set 1 0.7200 0.78 0.701
2D RDKit 0.7256 0.79 0.6986
Morgan fingerprint 0.4705 0.41 0.5448
Rdkit feat+FP 0.6662 0.71 0.6778
Mol2Vec 0.6387 0.7 0.6328
QM9 TL - LUMO Feature set 1 0.7759 0.82 0.7646
2D RDKit 0.7561 0.81 0.728
Morgan fingerprint 0.7300 0.73 0.6212
Rdkit feat+FP 0.7444 0.82 0.6849
Mol2Vec 0.7434 0.81 0.6976
QM9 TL - gap Feature set 1 0.7815 0.83 0.7589
2D RDKit 0.7332 0.80 0.6865
0.78
Morgan fingerprint 0.6946 0.78 0.6353
Rdkit feat+FP 0.6911 0.76 0.6223
Mol2Vec 0.6768 0.6296
QM9 TL - ZPVE Feature set 1 0.7825 0.83 0.7594
2D RDKit 0.7215 0.78 0.6954
Morgan fingerprint 0.6748 0.75 0.6367
Rdkit feat+FP 0.6723 0.76 0.6132
Mol2Vec 0.6540 0.74 0.6167
QM9 TL - cv Feature set 1 0.7998 0.85 0.775
2D RDKit 0.7307 0.79 0.7089
Morgan fingerprint 0.7109 0.80 0.6251
Rdkit feat+FP 0.7038 0.80 0.618
Mol2Vec 0.6479 0.72 0.6315
QMO TL - 12 Feature set 1 0.7576 0.83 0.6806
2D RDKit 0.6621 0.71 0.6708
Morgan fingerprint 0.3918 0.14 0.5203
Rdkit feat+FP 0.6108 0.63 0.6465
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Table 2 (continued)

Model Molecular Representation Accuracy F1 Score ROC-AUC
Mol2Vec 0.6692 0.72 0.6693
QM9 ext TL - alpha Feature set 1 0.7988 0.85 0.7611
2D RDKit 0.6936 0.78 0.6426
Morgan fingerprint 0.6916 0.79 0.6137
Rdkit feat+FP 0.3552 0 0.5
Mol2Vec 0.6443 0.72 0.6227
QM09 ext TL - mu Feature set 1 0.8110 0.86 0.7808
2D RDKit 0.7256 0.78 0.7191
Morgan fingerprint 0.7053 0.78 0.6661
Rdkit feat+FP 0.7571 0.82 0.7239
Mol2Vec 0.7749 0.84 0.7284
QM9 ext TL - HOMO Feature set 1 0.7998 0.85 0.7712
2D RDKit 0.6580 0.71 0.6558
Morgan fingerprint 0.4837 0.45 0.5473
Rdkit feat+FP 0.6585 0.75 0.607
Mol2Vec 0.6580 0.73 0.6372
QM09 ext TL - LUMO Feature set 1 0.8023 0.85 0.7844
2D RDKit 0.7754 0.83 0.7481
Morgan fingerprint 0.5767 0.61 0.604
Rdkit feat+FP 0.6540 0.72 0.6436
Mol2Vec 0.7327 0.80 0.689
QM09 ext TL - gap Feature set 1 0.8191 0.86 0.7958
2D RDKit 0.7393 0.80 0.7172
Morgan fingerprint 0.6606 0.73 0.6356
Rdkit feat+FP 0.6997 0.77 0.6582
Mol2Vec 0.7149 0.79 0.6643
QMO ext TL - zpve Feature set 1 0.8140 0.86 0.7893
2D RDK:it 0.7231 0.79 0.6808
Morgan fingerprint 0.7114 0.78 0.6689
Rdkit feat+FP 0.6575 0.74 0.6223
Mol2Vec 0.7058 0.80 0.6302
QM9 ext TL - cv Feature set 1 0.7154 0.80 0.6377
2D RDK:it 0.6982 0.76 0.6808
Morgan fingerprint 0.6895 0.78 0.6153
Rdkit feat+FP 0.7790 0.83 0.757
Mol2Vec 0.6601 0.73 0.6371
QM9 ext TL - 12 Feature set 1 0.3552 0 0.5
2D RDKit 0.6773 0.74 0.6563
Morgan fingerprint 0.3948 0.14 0.5237
Rdkit feat+FP 0.6570 0.73 0.6267
Mol2Vec 0.7129 0.78 0.6775

with a simpler molecular representation (feature set 1) and
expanded chemical space that included Sulfur (S) and Chlo-
rine (CI) atoms.

Validation of model performances on the PAMPA-
BBB assay derived test set

To validate the effectiveness of the computational models,
18 of the 2,036 active EEBL compounds were chosen to
complete in vitro validation [27]. These 18 compounds were
chosen after filtering compounds found in the B3D3 training
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set. The goal was to form an external validation set approxi-
mating equal representation of permeable and impermeable
compounds. The permeation for each of the 18 compounds
as determined by the PAMPA-BBB Assay are shown in
Supplementary Table 1. The compounds can be further clas-
sified based on their drug class: experimental (2), corticoste-
roid (2), immunomodulatory (1), vitamin (1), analgesic (1),
antimicrobial (7), investigation for cancer therapy (3), and
antiprotozoal (1). These drugs vary significantly in terms of
class, mechanism of action, and therapeutic uses. Some, like
beclomethasone dipropionate [28] and dimethyl fumarate
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[29] are well-established medications for inflammatory and
autoimmune diseases, whereas others, like 17-DMAG [30]
and Obatoclax Mesylate [31], are experimental and under
investigation for cancer and other conditions. Figure 3A
shows the compound classes and Fig. 3B outlines the over-
all permeability trends in form of P, value for each of the
tested drugs.

The heat map in Fig. 4 shows the performance of selected
models on this test set of 18 compounds. These models were
chosen based on their performance on a 25% held-out test
split from the B3DB dataset. The D-MPNN achieved an
accuracy of 77.78%, SVM of 72.22%, and DNN of 83.33%.

Fig. 3 PAMPA-BBB permeability

Overall, the best performing models were transfer learn-
ing models. Specifically, the model trained on the QM9-
extended polarizability property correctly classified 17 out
of 18 compounds, while the model trained on the QM9-
extended dipole moment property achieved correct classifi-
cation across all 18 experimental compounds.

Additional analyses to assess the contribution of QC
transfer learning

To clarify the contribution of QC-based transfer learning,
we compared a descriptor-only DNN baseline to models
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Model Validation on the PAMPA Curated EEBL Test Set

Model
PAMPA-BBB Accuracy

D-MPNN (hyperopt) 77.78%
SVM (2D RDKit + Morgan fp) 72.22%

DNN (2D RDKit + Morgan fp) 83.33% -

@ TL QM9 alpha (feature set 1) 77.78% +
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TL QM9-ext LUMO (feature set 1) 77.78%
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TL QM9-ext ZP VE (feature set 1) 88.89%
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Fig. 4 Classification of PAMPA-validated compounds and heat map of
model predictions on the PAMPA external test set.
Model performances on the external dataset curated from the results of

initialized with QC-pretrained embeddings across the two
independent test sets (Fig. 5). On the B3DB held out test set,
QC-transfer learning models achieved comparable or mod-
estly higher performance relative to the descriptor baseline
(Accuracy 0.8059, ROC-AUC 0.8010), with several QC-
derived embeddings (e.g., gap, zpve, mu) showing improve-
ments in accuracy and FIl. In contrast, on the PAMPA
curated test set, the benefit of QC pretraining was more pro-
nounced: while the descriptor-only baseline achieved Accu-
racy/ROC-AUC 0.78, with QM9-ext TL dipole moment and
polarizability embeddings achieving near-perfect accuracy
and ROC-AUC.

Feature ablation

To evaluate whether QC-transfer learning provides predic-
tive value beyond lipophilicity and molecular weight, we
repeated the analysis after removing LogP and MW from
the descriptor set (Fig. 6). On the B3DB test set, perfor-
mance decreased across all models when these descriptors
were excluded, yet QC-transfer learning models maintained
competitive accuracy and ROC-AUC (e.g., QM9-ext TL
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the PAMPA experiments of EEBL compounds. Models listed here are
the models that performed best on the B3DB test set

gap, Accuracy 0.819 — 0.753). On the PAMPA test set, QC-
pretrained models continued to achieve strong performance
despite the removal of LogP and MW, including QM9-ext
TL alpha (Accuracy 0.944 — 0.889) and QM9-ext TL gap/
zpve (Accuracy ~0.833).

Comparison with Pgp inhibition

To further evaluate the specificity and generalizability of
QC-based transfer learning, we compared models pretrained
on QC properties (QM9 and QM9-ext) to models pretrained
on P-glycoprotein (P-gp) inhibition, a task-specific biologi-
cal property relevant to drug absorption, metabolism, and
brain penetration (Fig. 7). On the B3DB test set, QC-trans-
fer learning models achieved higher predictive performance
than P-gp pretrained models. Accuracy ranged from 0.7988
to 0.8191 for QC-based embeddings compared to 0.7739—
0.7769 for P-gp embeddings, with similar trends observed
for F1 score (0.85-0.86 vs. 0.82-0.83) and ROC-AUC
(0.7611-0.7958 vs. 0.7521-0.7657). On the PAMPA curated
test set, the differences were more pronounced. QC-transfer
learning models showed substantially higher performance,
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Fig. 5 Performance comparison of descriptor-only and QC-transfer
learning models for BBB permeability prediction.

Accuracy and ROC-AUC are shown for nine models evaluated on the
B3DB external test set (left) and the PAMPA curated test set (right).
The descriptor-only DNN serves as the baseline. QC-transfer learn-

with some embeddings achieving correct prediction for all
18 compounds, whereas P-gp pretrained models performed
poorly (Accuracy/F1I/ROC-AUC=0.61).

Scaffold split

To evaluate model generalizability to novel chemical scaf-
folds, we constructed models using a scaffold-based split to
ensure test molecules from the B3DB set are structurally
distinct from those used in training. Overall, models exhib-
ited a modest decline in performance on the held out B3DB
and PAMPA curated test sets compared to random splits,
consistent with the more stringent nature of scaffold-based
evaluation (Table 3).

On the B3DB test set, the MPNN model achieved 0.8683
/0.8971 /0.9262 (Accuracy / F1 / ROC-AUC) under scaf-
fold split compared to 0.8801 / 0.908 / 0.8620 under random
split. The DNN model showed a similar trend (0.7982 / 0.84
/0.7820 vs. 0.8232 / 0.86 / 0.805). For the SVM baseline,
performance decreased slightly from 0.8247 /0.87 / 0.7943
t0 0.8140/0.86/0.7872, while the QC-based transfer learn-
ing models (QM9-ext pretraining) generally maintained
accuracies between 0.77 and 0.82 on B3DB.

Evaluation on the PAMPA dataset reflected a comparable
pattern. Accuracies across models ranged from 0.72 to 0.83
under scaffold split, compared to 0.78-1.00 under random
split, indicating reduced but still meaningful predictive per-
formance on unseen molecular scaffolds.

ing models achieved comparable or modest improvements on B3DB,
while showing substantial performance gains on the PAMPA set, with
QM9-ext TL p and o embeddings achieving near-perfect predictive
performance. Error bars express binomial confidence interval at 95%
confidence level

Discussion and conclusion

Leveraging the B3DB dataset, we investigated several
molecular representations and machine learning models,
evaluating their effectiveness in predicting BBB perme-
ability. Additionally, we examined the potential for transfer
learning techniques, particularly when trained on a source
dataset of QC properties, to transfer to the domain task of
BBB penetration. To assess the generalizability of these
approaches, we curated an external dataset comprising 18
compounds, each with corresponding in vitro data obtained
through PAMPA experiments.

Evaluation of model performances with various molecu-
lar representations on the B3DB test set demonstrated that
SVMs (combined RDKit and Morgan fingerprint represen-
tation) attained best overall performance with accuracy of
89.08%, AUC of 0.877, and an F1 score of 0.92. RDKit
computed physicochemical properties reflect the drug’s
passive diffusion capabilities, while Morgan fingerprints
capture specific interactions like uptake, efflux, and protein
binding. The integration of these complementary descrip-
tors provided a more complete and comprehensive repre-
sentation of the molecules.

Given the potential for transfer learning to enhance
model performance when data from related domains is
available, we investigated its applicability to the B3DB
dataset. Transfer learning methods are particularly use-
ful in situations where labeled data is limited or expensive
to obtain, as they allow a model to leverage knowledge
learned from a source domain (QC properties) and apply
it to a target domain (BBB permeability) [32]. We selected
QC properties to be the source domain in our study because

@ Springer
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Fig.6 Impact of removing LogP
and molecular weight (MW)
descriptors on transfer learning
model performance.

Bar plots compare accuracy for
models trained with the full fea-
ture set versus an ablated feature
set excluding LogP and MW.
Results are shown for (upper)
the B3DB test set and (lower)
the PAMPA test set. Across most
models, removal of LogP and
MW led to a reduction in predic-
tive performance, with the largest
drops observed in QM9-ext TL
models using HOMO, LUMO,
and gap descriptors. Notably,
QMB9-ext TL models with dipole
moment (p) retained relatively
strong accuracy even without
LogP and MW, particularly in the
B3DB test set, suggesting that
dipole-derived quantum proper-
ties capture complementary
information to standard physi-
cochemical descriptors. These
findings highlight the importance
of LogP and MW as influential
features in BBB permeability
prediction, while also underscor-
ing the added predictive value of
incorporating quantum chemical
descriptors. Error bars express
binomial confidence interval at
95% confidence level
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they provide detailed, fundamental insights into the elec-
tronic structure and reactivity of molecules that influence
the fundamental factors influencing BBB transport includ-
ing logD, pKa, rate of transport, binding affinity with p-gly-
coproteins. Both the QM9 and QM9-extended datasets were
used for source domain model development to investigate
whether training on an expanded chemical space including
the additional heavy atoms of S and Cl had any impact on
model performance. Notably, these datasets consist primar-
ily of small molecules (<250 Da), whereas typical BBB-
permeable drugs are larger (~300—400 Da). Performing
high-quality QC calculations on many larger molecules is
computationally intensive and impractical, so pretraining
on smaller molecules allows the model to efficiently learn
fundamental QC relationships, which can then be fine-tuned
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on BBB permeability data spanning a broader, drug-like
chemical space.

For transfer learning models based on the QM9 source
domain, polarizability and dipole moment emerged as the
most effective QC properties for enhancing predictive per-
formance (Table 2). To provide chemical context for their
influence on BBB permeability, we examined representa-
tive compounds from both the training and test sets. From
the training set, diazepam, a benzodiazepine with a fused
aromatic ring system, exhibits high polarizability, moder-
ate dipole moment, and high lipophilicity, features that
align with its known BBB permeability. In contrast, furo-
semide, a sulfonamide diuretic with a polar sulfonamide
group and multiple hydrogen bond donors, displays reduced
polarizability and higher dipole moment, contributing to its
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Fig. 7 Comparison of QC-based transfer learning vs. Pgp inhibition
pretrained embeddings for BBB permeability prediction.

Grouped bar plots show Accuracy, F1 Score, and ROC-AUC for mod-
els pretrained on general QC properties (QM9 and QM9-ext) versus
models pretrained on P-gp inhibition. Results are shown separately for
the B3DB test set (left) and PAMPA curated test set (right). QC-trans-
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fer learning models consistently outperform P-gp TL models, particu-
larly on the PAMPA set, demonstrating that QC-derived embeddings
capture generalizable molecular features relevant for BBB perme-
ability, whereas task-specific embeddings (P-gp inhibition) are less
transferable. Error bars express binomial confidence interval at 95%
confidence level

Table 3 Performance of different machine learning models and transfer learning approaches on the B3DB and PAMPA test sets

Model Molecular Representation B3DB (Acc/ F1 /ROC-AUC) PAMPA (Acc / F1 /ROC-AUC)
DNN Feature set 1 0.7982/0.84 /0.7820 0.8333/0.8421/0.8333
MPNN Learned 0.8683/0.8971/0.9262 0.8333/0.8571/0.8333
SVM Feature set 1 0.8140/0.86/0.7872 0.7222/0.7826 / 0.7222
QM9-ext TL - alpha Feature set 1 0.7772/0.85/0.7058 0.7222/0.7826 / 0.7222
QM9-ext TL - mu Feature set 1 0.8181/0.87/0.7810 0.7222/0.7619 / 0.7222
QM9-ext TL - HOMO Feature set 1 0.8053/0.85/0.7859 0.7222/0.7059 / 0.7222
QM9-ext TL - LUMO Feature set 1 0.8145/0.86 /0.7852 0.7222/0.7619 / 0.7222
QM9-ext TL - gap Feature set 1 0.8145/0.86/0.7855 0.7778 /0.8000 / 0.7778
QM9-ext TL - zpve Feature set 1 0.8130/0.86/0.7849 0.6667/0.7273 / 0.6667
QM9-ext TL - 12 Feature set 1 0.7367/0.80/0.7016 0.6111/0.6957/0.6111
QM9-ext TL - cv Feature set 1 0.7725/0.83 /0.7240 0.6111/0.6957/0.6111

Accuracy (Acc), F1 score (F1), and ROC-AUC are reported for each model. “Feature set 1” refers to molecular descriptors (MW, LogP, TPSA,
and HBD) used as input, while “Learned” indicates representations learned directly by the model (e.g., MPNN). QM9-ext TL denotes models
pretrained on QM9-extended QC properties (o, o, HOMO, LUMO, gap, ZPVE, r2, CV) and subsequently fine-tuned on the BBB permeability

task

non-permeable classification. From the test set, fluradoline
contains aromatic systems imparting high polarizability,
aligning with its BBB permeability. Mezlocillin, a BBB-
impermeable B-lactam antibiotic with a penicillin core,
shares structural and QC features with furosemide including
high dipole moment from multiple polar moieties.

For transfer learning models based on the QM9-extended
source domain, the best QC properties to offer transfer
learning capability with the initial descriptor set (feature
set 1) as representation were polarizability, dipole moment,
HOMO, LUMO, gap, and ZPVE. The four descriptors of
feature set 1 (MW, LogP, TPSA, and HBD), capture core
molecular properties and are consistent across chemical
spaces, making them ideal for transfer learning. A simpler
representation is preferred for transfer learning as it reduces
noise and redundancy, allowing the model to focus on gen-
eralizable patterns learned during pretraining. By expanding

the chemical space to include the S and Cl atoms of QM9-
extended, several QC properties including the electronic
properties (HOMO, LUMO, gap) had improved transfer
learning performance. This supports the chemical intuition
that S and CI can alter orbital energies due to their higher
electronegativity and larger atomic radius, respectively.

Evaluating the generalizability of ML models on exter-
nal datasets is crucial to ensure robustness and reliability in
real-world applications. To curate our external dataset, we
selected 18 molecules from the EEBL to form an external
validation set with the goal of approximating equal repre-
sentation of permeable and impermeable compounds. Spe-
cial attention was given to selecting compounds with limited
or poorly documented permeability data in the literature to
challenge the models.

All model predictions for the six compounds, BMY 7378,
beclomethasone dipropionate, fluocinolone acetonide,
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Table 4 12 ground state QC properties of the QM9 and QM9-extended
Datasets

Molecular Property Description

mu Dipole moment

alpha Norm of static polarizability

HOMO Highest unoccupied molecular orbital
LUMO Lowest unoccupied molecular orbital
gap Difference between HOMO and LUMO
<R% Electronic spatial extent

ZPVE Zero-point vibrational energy

cv Heat capacity

uo Internal energy at 0 K

U298 Internal energy at 298.15 K

G298 Free energy at 298.15 K

H298 Enthalpy at 298.15 K

The QM9 and QM9-extended dataset provides QC properties of
small organic molecules, which are essential for Understanding
molecular structure, behavior, and interactions. Electronic properties
include dipole moment, polarizability, HOMO, LUMO, gap. Spatial
and structural properties include <R2>and ZPVE. Thermodynamic
properties include heat capacity, internal energies, Gibbs free energy,
and enthalpy

biotin (vitamin B7), phenacetin, and salicylanilide, aligned
with the results of the in vitro PAMPA assay for positive
BBB permeability. These compounds share the common
characteristics of lipophilicity and small molecular size.
BMY 7378, a selective alD-adrenoceptor antagonist and
partial agonist/antagonist of the 5-HT,, receptor, is an
experimental drug studied for its potential use for treating
hypertension as well as dual angiotensin-converting enzyme
(ACE) inhibition [33]. There is currently limited knowledge
and data detailing its BBB permeability in widely accessible
sources or databases. Fluocinolone acetonide shares struc-
tural traits with diazepam, a compound from the training
set, including a steroid backbone and fused rings, resulting
in high polarizability and moderate lipophilicity. These fea-
tures support its correct classification as BBB-permeable.
Biotin (vitamin B7) is known to function as a cofactor for
several carboxylation reactions in the brain and its mecha-
nism of entry via saturable transport systems into and from
the CNS has been studied [34, 35]. Phenacetin, a non-opi-
oid analgesic, has been shown to have some degree of CNS
effects including relaxation, drowsiness, euphoria support-
ing its ability to cross the BBB [35]. Salicylanilides are a
class of compounds that have demonstrated antimicrobial
properties but are also being investigated for their antican-
cer properties. The application of salicylanilide derivatives
for treatment of glioblastoma, a brain tumor in which drug
penetration of the BBB is needed for therapeutic effect, is an
area of active medicinal chemistry research [36].

All model predictions for sulfamerazine and diminazene
aceturate were consistent with the PAMPA assay results of
BBB impermeability [37]. Sulfamerazine, a sulfonamide
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antibiotic used to treat bacterial infections, is not typically
used as a first-line agent for CNS infections, as other antibi-
otics with better BBB penetration are usually preferred [38].
Diminazene aceturate is a drug commonly used to treat try-
panosomiasis (African sleeping sickness) and babesiosis,
acting mainly on the bloodstream and tissues with limited
central effect [39].

Transfer learning models performed well in aligning
with in vitro PAMPA assay results for the compounds being
investigated for cancer research and treatment. Transfer
learning models are the only models shown in Fig. 4 that
accurately predicted the impermeability of 17 DMAG
(Alvespimycin) HCI, a heat shock protein 90 (HSP90)
inhibitor [40, 41] with potential antineoplastic activity via
the mechanism of reactive oxygen species (ROS) genera-
tion. This compound has known challenges in crossing bar-
riers such as the BBB, likely due to its large polar surface
area and high molecular weight [41]. All transfer learning
models, excluding the QM9 dipole moment property, also
do well to predict the impermeability of YM155 (sepan-
tronium bromide). The ability of the QM9-extended dipole
moment model to correctly predict sepantronium bromide’s
impermeability highlights the importance of the expanded
chemical space of S and Cl atoms in the training dataset.
Sepantronium bromide contains a quaternary ammonium
group, imparting a separation of positive and negative
charges and high dipole moment, properties that align with
its non-permeability. This compound shows promise for
antineoplastic activity, particularly against non-small cell
lung cancer (NSCLC), prostate cancer, and melanoma. For
obatox mesylate, a compound being explored for its Bcl-2
antagonism, transfer learning models to QM9-ext properties
did well to predict its impermeability. The BBB permeabili-
ties of both sepantronium bromide and obatox mesylate are
not yet extensively documented in the literature.

Clofoctol is an antibiotic that has been investigated for
its potential to treat gliomas, however, specific quantita-
tive data on its BBB permeability are limited [42]. The
D-MPNN, DNN, SVM outperform the transfer learning
models to support the PAMPA assay in clofoctol’s perme-
ability, which is likely due to its small molecular weight and
hydrophobicity. Aminothiazole [43] is another agent that
has served as a scaffold in medicinal chemistry and shown
diverse clinical applications including infection, cancer,
inflammation, and Alzheimer’s, a neurological disorder in
which BBB penetration is essential for therapeutic efficacy
[44]. Except for the D-MPNN, all models predicted ami-
nothiazole’s permeability. Secnidazole is a nitroimidazole
antimicrobial agent primarily used to treat parasitic infec-
tions like amebiasis, giardiasis, and bacterial vaginosis [45].
Secnidazole’s impermeability was accurately predicted by
the transfer learning models to QM9-extended properties
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of polarizability, dipole moment, and HOMO. Furaltadone
HCIl was predicted to be impermeable across all models.

Excluding the transfer learning model to QM9 polariz-
ability, all models predicted BBB permeability of dimethyl
fumarate, a drug whose ability to exert effects within the
CNS is essential for treating the neurological condition,
multiple sclerosis. For bardoxolone methyl, the deep learn-
ing models (D-MPNN, DNN, and 5 out of the 6 transfer
learning models to QM9-extended properties) were consis-
tent with the PAMPA assay result of impermeability. Bar-
doxolone is a novel drug initially developed as a modulator
of inflammation-associated carcinogenesis by inducing the
Nrf2 pathway, inhibiting NF-«B, leading to antioxidant and
anti-inflammatory effects [46].

To evaluate the contribution of QC-derived embeddings,
we performed analyses for contribution beyond traditional
descriptors, descriptor ablation experiments, and com-
parison for alternate pretraining tasks. The results of direct
comparison between descriptor-only models and QC-based
transfer learning suggests that while LogP and MW remain
strong contributors to BBB prediction, QC-derived embed-
dings may provide complementary molecular-level infor-
mation that is not fully captured by traditional descriptors.
The gains were modest on the B3DB test set but more pro-
nounced on the external PAMPA curated test set, indicating
that QC-based transfer learning has the potential to improve
generalizability.

Feature ablation analyses further confirmed that the pre-
dictive signal from QC-derived embeddings is not solely
attributable to lipophilicity or molecular weight. When
LogP and MW were removed from the descriptor set, QC-
transfer learning models retained strong performance across
both the B3DB and PAMPA test sets, with only modest
decreases in Accuracy and ROC-AUC. This finding demon-
strates that QC embeddings contribute unique information,
likely reflecting electronic and quantum mechanical proper-
ties that influence passive diffusion and membrane interac-
tions, which are not captured by traditional descriptors.

To further isolate the effect of QC-based pretraining, we
compared models pretrained on QC properties (QM9 and
QM09-extended) to models pretrained on P-glycoprotein
(P-gp) inhibition, a biologically relevant property affecting
drug absorption and brain penetration. P-gp was chosen as
a comparison because it represents a task-specific endpoint
directly related to CNS drug disposition. QC-transfer learn-
ing models showed modestly higher performance on the
B3DB test set and substantially better performance on the
external PAMPA curated test set, with some embeddings
achieving near-perfect predictions, whereas P-gp pretrained
models performed relatively poorly. These results sug-
gest that QC-derived embeddings may capture molecular

features that are broadly informative for BBB permeability
and not limited to task-specific signals.

We acknowledge that the experimental dataset used for
model validation includes only 18 compounds; however,
the objective was to experimentally determine the BBB per-
meability of select compounds using PAMPA, particularly
those for which permeability data were previously unavail-
able. To further evaluate the robustness and generalizability
of the developed models beyond this small validation set,
we additionally assessed model performance using a scaf-
fold split, which partitions molecules by structural scaffolds
to simulate prediction on unseen ones. As expected, model
performance modestly decreased relative to random splits,
reflecting the more stringent and realistic nature of scaffold-
based evaluation. Nonetheless, the models maintained con-
sistent predictive ability across both evaluation schemes,
suggesting that they capture transferable molecular features
rather than relying on scaffold-specific correlations. Future
studies will aim to expand this experimentally derived test
set and complement PAMPA-BBB assays with cell-based
and in vivo models to account for transporter-mediated
effects and in situ permeability dynamics.

A limitation of this study is that both the computational
models and the in vitro experiments assume an intact BBB.
While this assumption holds true in many physiological
and pathological contexts, there are scenarios where the
BBB is compromised. For instance, in gliomas and other
neurological conditions such as stroke, multiple sclerosis,
or traumatic brain injury, the BBB integrity is disrupted,
allowing for altered transport dynamics and permeability.
These disturbances may significantly impact the applicabil-
ity and accuracy of the models in predicting drug delivery
or other interactions in such cases. Future work will focus
on developing models and curating datasets that account for
BBB disruption to better reflect the complexities of these
pathological conditions.

Ultimately, our approach has promising potential to
extrapolate effectively to novel compounds with no exist-
ing BBB permeability data, enabling the identification of
candidates without the need for extensive testing and allow-
ing the design of compounds with an increased probability
of success. As we continue to refine our models and expand
data collection, this synergy of computation and experimen-
tation could accelerate drug discovery, enabling faster, more
cost-effective, and targeted identification of CNS-active or
CNS-sparing drugs.
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Experimental section
Datasets

B3DB. The dataset used for model development is B3DB,
one of the largest public BBB benchmark datasets con-
sisting of 7,807 compounds compiled from 50 published
resources with accompanying precomputed 2D chemical
descriptors from the Mordred package (Table 1) [13]. The
set of 7,807 compounds has categorical values of BBB
permeability (4956 BBB-permeating and 2851 BBB-non-
permeating) and as stated in their publication, compounds
were cleaned of salts and solvents, and those with heavy
metal atoms were removed. It consists of a range of heavy
atoms from 1 to 136 and the heavy atoms C, N, O, F, S,
Cl, Br. We divided the B3DB dataset into a random train/
test 75/25 split and applied a data balancing technique to
the training set. Using a balanced dataset is essential in
preventing bias of the model towards the more dominant
class of compounds. To achieve a more balanced 1:1 ratio
of BBB+:BBB-, we applied the random oversampling tech-
nique to the training split in which instances within the
BBB- class were duplicated.

To evaluate model generalizability across diverse chemi-
cal structures, we performed a scaffold-based split of the
dataset using Bemis—Murcko scaffolds. Molecules sharing
the same scaffold were assigned together to either the train-
ing or test set, ensuring that structurally similar compounds
were not divided across sets. Approximately 75% of com-
pounds were allocated to training and 25% to testing, result-
ing in 5,853 molecules in the training set and 1,952 in the
test set. Two molecules with invalid SMILES strings were
excluded.

QM9. The QM9 dataset is a widely used benchmark
dataset in computational chemistry and machine learning
consisting of 133,885 molecules [24]. The molecules are
derived from the GDB-17 chemical space and contain up
to 9 heavy atoms (carbon, oxygen, nitrogen, fluorine). Each
molecule was optimized at the B3LYP/6-31G(2df, p) level
of theory and twelve ground-state quantum chemical prop-
erties are provided: dipole moment, isotropic polarizability,
energy of HOMO, energy of LUMO, energy of gap, elec-
tronic spatial extent, zero point vibrational energy (ZPVE),
heat capacity, and atomization energies (U0, U298, G298,
H298 (Table 4). This dataset was utilized for source domain
model development in transfer learning and was randomly
split into train/test 80/20.

QM9-Extended. The QM9-extended dataset expands
beyond the QM9 chemical space and enables greater appli-
cation to drug discovery by covering an additional ~ 20,000
molecules containing sulfur and chlorine atoms [21]. The
GDB-17 space was filtered for compounds with S or CI and
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no more than nine heavy atoms. Each compound underwent
a low-mode conformational search with the MMFF94x and
subsequent geometry optimization at the same level of the-
ory as the QMO data set, B3LYP/6-31G(2df, p). This dataset
was utilized for source domain model development in trans-
fer learning and was randomly split into train/test 80/20.

P-gp (P-glycoprotein) Inhibition. We used the P-glyco-
protein (Pgp) inhibition dataset curated by Broccatelli et al.,
comprising 1,212 compounds with experimentally deter-
mined activity. Pgp is an ABC transporter that influences
drug absorption, metabolism, and brain penetration, and
its inhibition can affect bioavailability and multidrug resis-
tance. The task is binary classification: given a compound’s
SMILES string, predict whether it inhibits Pgp. A D-MPNN
was trained on this dataset to generate predictions for QM9
and QM9-extended compounds, which were then used in a
transfer learning framework: first pretraining on Pgp inhibi-
tion as a source task and subsequently fine-tuning for BBB
permeability prediction [47].

Molecular representation

In this study, we explored a range of molecular representa-
tions with different machine learning models to determine
which representations performed best, depending on the
complexity of the model used. Below, we describe the rep-
resentations used in our experiments: molecular descriptors,
Morgan fingerprints, combined descriptors and Morgan fin-
gerprints, and learned embeddings.

Molecular Descriptors. The first descriptor set, which
we refer to as “feature set 17, serving as inputs to the mod-
els consists of MW, LogP, TPSA, and HBD. These were
selected based on the CNS drug space as defined by the 6
physicochemical properties: ClogP, ClogD, MW, TPSA,
HBD, pka [48]. These features were normalized for con-
sistency and to improve model performance. Another
descriptor set included 208 two-dimensional physicochemi-
cal descriptors computed using RDKit. Interpolation was
applied to address any missing values (Na) for descriptors
that could not be calculated.

Morgan Fingerprints. Morgan fingerprints encode
which substructures are within a molecule within a certain
radius of organic molecule bonds [49]. Morgan fingerprints
were generated using the RDKit library and computed with
a radius of 2 and fingerprint size of 2048 bits. The radius
defines the number of bonds to include around each atom,
capturing increasingly larger substructures as the radius
increases. A radius of 2 was chosen to balance computa-
tional efficiency and the level of structural detail captured.
A fingerprint size of 2048 bits was selected to provide a suf-
ficiently large bit vector for distinguishing between different
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molecular structures while maintaining a reasonable com-
putational cost.

Molecular Descriptors combined with Morgan fin-
gerprints. We adopted the approach demonstrated by Yuan
et al., combining molecular property-based descriptors and
molecular fingerprints to improve the prediction accuracy
of BBB permeability [50]. As described above, the 208 2D
RDKit descriptors served as the molecular property-based
descriptors. The molecular descriptors and Morgan finger-
prints were concatenated into a unified feature set for each
compound. The values of property-based descriptors were
normalized, and the Boolean values of fragment-based
descriptors were not.

Learned Embeddings. Mol2Vec is an unsupervised
machine learning approach inspired by the Word2Vec
model that learns vector representations of molecular sub-
structures. It encodes molecular structures into continuous
vector representations, which can be used as input features
for various predictive tasks in cheminformatics [S1]. The
pre-trained Mol2Vec model, which was trained on 20 mil-
lion compounds with radius of 1 for Morgan fingerprints,
was used to generate embeddings to serve as inputs to the
models in this study.

Model development

Support vector machine (SVM). Hyperparameter optimi-
zation was conducted using grid search to identify the best
combination of the kernel, regularization parameter (C),
kernel coefficient (gamma), and degree (for the polynomial
kernel). The grid search explored a range of values for C
(e.g., 1, 10, 100, 1000), gamma (e.g., 0.01, 0.1, 0.02, 0.2,
0.03, 0.3,0.04, 0.4, 0.05, 0.5, 0.6, 0.7, 0.8, 0.9), and degree
(e.g., 2, 3, 4). The optimized SVM model was trained
using the best hyperparameters identified in the grid search
(Table 5).

DNN. We conducted manual hyperparameter optimi-
zation using a series of trial runs. Key hyperparameters
including learning rate, number of hidden layers, number
of neurons per layer, batch size, and dropout rate were var-
ied individually and in combination based on prior domain

Table 5 Grid search optimized SVM hyperparameters for each molec-
ular Representation

Molecular Representation kernel C gamma degree
Feature set 1 rbf 1000 0.9 Na
2D RDKit poly 1 0.02 4
Morgan fingerprint poly 100  0.03 4

2D RDKit+Morgan fingerprint poly 1 0.01 4
Mol2Vec poly 1 0.03 4

Hyperparameter optimization was conducted for each of the molecu-
lar representations using grid search to identify the best combina-
tion of the kernel, regularization parameter (C), kernel coefficient
(gamma), and degree (for the polynomial kernel)

knowledge and empirical performance. A DNN with a feed-
forward architecture consisting of four layers with 64, 32,
16, and 1 neurons, respectively, was constructed. ReLU
(Rectified Linear Unit) activation functions were applied
to all hidden layers and dropout regularization with a rate
of 0.1 was applied to prevent overfitting. The model was
trained using the Adam optimizer with an initial learning
rate of 0.001 and a batch size of 32. Training was con-
ducted for 1000 epochs, with the learning rate dynamically
adjusted using a learning rate step scheduler to ensure con-
vergence. Binary cross-entropy loss was employed as the
loss function.

Baseline DNN. To enable direct comparison with the
transfer learning architecture, we trained a baseline DNN on
the BBB permeability dataset using the same layer structure
as the transfer learning model. The network consisted of six
fully connected layers: three initial layers for feature encod-
ing ([256, 128, 64]) followed by a classification head ([256,
128, 1]). ReLU activations were applied after each hidden
layer, and a dropout rate of 0.2 was used to mitigate overfit-
ting. The final layer employed a sigmoid activation to output
the probability of BBB permeability. The model was trained
using the Adam optimizer (initial learning rate=0.0001)
with a step learning rate scheduler (step size=250) and a
batch size of 32 for 800 epochs. This architecture served as
a baseline control to evaluate the performance gains attrib-
utable to transfer learning.

D-MPNN. To build GCNN models, we used D-MPNN
as implemented in Chemprop (https://github.com/chemp
rop) [52]. The D-MPNN network architecture parameters
were hyperparameter optimized for the B3DB data set using
Bayesian optimization, and the optimal hyperparameters
(depth: 6, hidden size: 1000, number of fully connected
layers: 3, dropout: 0.25) were then used to train the model.
Additional featurization with RDKit features as provided
with Chemprop was also explored.

Transfer Learning. The transfer learning approach
applied in this study is outlined in Fig. 8 and involves two
DNN models trained sequentially on different but related
tasks. Model 1 was trained on the source task, the regression
of QC properties using either the QM9 or QM9-extended
dataset. This model was a feedforward DNN consisting of
four fully connected layers with hidden dimensions of [256,
128, 64] and a single output neuron (for the predicted QC
property). The network was trained using the Adam opti-
mizer with an initial learning rate of 0.0001 and a batch size
of 32.

After convergence, the learned representations from
this source model were transferred to Model 2, which was
designed for a target task: binary classification of BBB per-
meability. To enable transfer learning, all layers in Model
1 except the output layer were preserved and their weights
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Fig. 8 Transfer learning from QM
property to BBB permeability.
Illustration of the transfer learn-
ing methodology applied in this
study. Knowledge is learned
from a source domain (quantum
chemical properties) and trans-
ferred to a target domain (BBB
permeability). The lock icon
represents the pretrained model’s
frozen layers that are not updated
during training to the new task.
Created with BioRender.com

(source domain)

QM9, QM9-extended

Model 1

frozen, meaning they were excluded from gradient updates
during further training. The original output layer, used for
the regression task, was removed and replaced with a new
classification head consisting of three layers [256, 128, 1]
with ReLU activations in the hidden layers and a sigmoid
activation in the final layer for binary output. Model 2 was
trained on the BBB dataset using the Adam optimizer (ini-
tial learning rate of 0.0001), a step learning rate scheduler
(step size=250), and a batch size of 32 for 800 epochs.

Learning was transferred by reusing the feature represen-
tations learned from the QC property prediction task, with
the assumption that these representations capture molecular
features relevant to both source and target tasks. Fine-tuning
was then applied only to the new layers, adapting the previ-
ously learned molecular embeddings to the BBB classifica-
tion task. This transfer was achieved not merely by copying
weights, but by repurposing the frozen layers as a molecular
feature extractor, while allowing the new classification lay-
ers to specialize to the BBB prediction objective.

In terms of architectural flexibility, while the backbone
architecture of the frozen layers remained constant between
Models 1 and 2, the classification head (new output layers)
was designed independently. Therefore, it is not necessary
for the entire architecture, particularly the output layers,
to match between the source and target models. Only the
encoder portion (shared layers) needs to remain unchanged
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to enable proper weight reuse and compatibility during
transfer.

Data analysis

All data was characterized as a continuous or ordinal vari-
able, and then, further analyzed with GraphPad Prism
(GraphPad Software, Boston, MA, USA). For model per-
formance, binomial 95% confidence intervals of the mean
of Fl-score, ROC-AUC, and accuracy data were analyzed
for each model [53].

Curation of external validation dataset with PAMPA-
BBB

The EEBL comprises 2,036 diverse small molecules with
confirmed biological and pharmacological activities, includ-
ing 1,018 FDA-approved compounds. Datapoints included
in the EEBL are these specific small molecules. These mole-
cules target over 200 distinct proteins involved in more than
20 signaling pathways, including those related to survival
and apoptosis [54].

The eighteen commercial drugs from the curated test set
were obtained from MedChemExpress (Monmouth Junc-
tion, NJ, USA). These drugs were chosen after stratification
of drugs based off predicted BBB permeability and formed
an external validation set with the goal of approximating
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equal representation of permeable and impermeable com-
pounds. The Parallel Artificial Membrane Permeability
Assay-BBB Kit (PMBBB-096) was obtained from BioAs-
say Systems (Hayward, CA, USA). The PAMPA kit allows
for the quantitative determination of BBB permeability
through the usage of an artificial lipid membrane. This
kit contains a donor plate, acceptor plate, working tray,
dodecane, dried brain lipids, high permeability control, and
low permeability control. The PAMPA was conducted as
described in the protocol and past literature and absorbance
was measured with the BioTek Cytation 5 Cell Imaging
Multimode Reader (Agilent Technologies, Inc., Santa Clara,
CA, USA) [55]. After absorbance reading, the permeability
equation provided in the PAMPA protocol, the high perme-
ability control, and the low permeability control were used
to assign “high permeability” (BBB+), “average permeabil-
ity” (BBB+/-), or “poor permeability” (BBB-) to each test
compound (Supplementary Table 1):

‘BBB+’ (high BBB permeation predicted); Pe (10—6 cm
s—1)>4.0.

‘BBB—’ (low BBB permeation predicted); Pe (10—6 cm
s—1)<1.5.

‘BBB+/—’ (BBB permeation average); Pe (10—6 cm s—1)
from 4.0 to 1.5.

Abbreviations

BBB Blood-brain barrier

CNS Central nervous system

QC Quantum chemical

PAMPA-BBB Parallel Artificial Membrane Permeability
Assay-BBB

B3DB Blood-Brain Barrier Database

SVMs Support vector machines

DNNs Deep neural networks

D-MPNNs Direct message passing neural networks

EEBL Emory Enriched Bioactive Library

ML Machine learning

DL Deep learning

Mol2Vec Learned vector representations of molecu-
lar substructures

ROC-AUC Area under the receiver operating charac-
teristic curve

ACE Angiotensin-converting enzyme

HSP90 Heat shock protein 90

ROS Reactive oxygen species

ZPVE Zero point vibrational energy

P-gp P-glycoprotein

MI155 Sepantronium bromide

NSCLC Non-small cell lung cancer

ReLU Rectified Linear Unit

MW Molecular weight

TPSA
HBD

Topological surface area
Hydrogen bond donors
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