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Abstract
The blood-brain barrier (BBB), crucial for central nervous system (CNS) homeostasis, poses challenges for drug delivery 
in CNS diseases due to selective permeability. Because of this difficulty, there are limited treatments developed for CNS 
diseases. As a solution, computational models can be implemented in treatment development to enable rapid screening of 
drug permeability, saving time and resources. This study explores machine learning, deep learning, and transfer learning 
models to predict the BBB permeability of drug molecules, validated through an in vitro assay known as Parallel Arti-
ficial Membrane Permeability Assay-BBB (PAMPA-BBB). Using the Blood-Brain Barrier Database (B3DB) of ∼ 8,000 
compounds of known BBB permeability, classification models including support vector machines (SVMs), deep neural 
networks (DNNs), direct message passing neural networks (D-MPNNs), and transfer learning with quantum chemical 
properties were developed. Experimental validation with 18 compounds from the Emory Enriched Bioactive Library 
(EEBL), a library containing 1,018 FDA-approved pharmacologically active compounds of known activity, highlighted 
PAMPA-BBB as a robust validation method. The SVM model with combined 2D RDKit and Morgan fingerprint molecular 
representation achieved high performance (accuracy: 89.08%) on the B3DB test set. The best-performing models for the 
18 EEBL compounds were transfer learning models. In particular, the model trained on the QM9-extended polarizability 
property correctly classified 17 out of 18 compounds, while the model trained on the QM9-extended dipole moment 
property achieved correct classification across all 18 experimental compounds. Additional analyses demonstrated that QC-
based transfer learning provides complementary predictive value beyond traditional molecular descriptors such as LogP 
and molecular weight. QC-pretrained models achieved higher accuracy and ROC-AUC on both the B3DB and external 
PAMPA test sets, with performance remaining robust even after descriptor ablation. Moreover, QC-pretrained models 
outperformed the baseline of P-glycoprotein (P-gp) inhibition, underscoring the unique contribution of quantum-derived 
representations to BBB permeability prediction. Therefore, this study motivates the synergy of computational and experi-
mental methods in enabling faster, more cost-effective, and targeted identification of CNS-active or CNS-sparing drugs.
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Introduction

The blood-brain barrier (BBB) is a highly selective, pro-
tective boundary of the central nervous system (CNS) that 
plays a critical role in maintaining the brain’s microenviron-
ment [1]. It functions to shield the brain from harmful sub-
stances, pathogens, and toxins present in the bloodstream 
while allowing essential nutrients and molecules to pass 
through. Its protective mechanisms include tight junctions, 
active transport systems such as efflux pumps, and enzy-
matic barriers [2]. While the BBB is highly effective, it also 
poses challenges for drug delivery, as it restricts the entry 
of most therapeutic agents [3–5]. The inability of drugs to 
cross the BBB creates a major hurdle in developing treat-
ments for neurological conditions, such as Alzheimer’s 
disease, Parkinson’s disease, brain and spinal cord tumors, 
and epilepsy, where effective drug delivery to the brain is 
essential for therapeutic success [6]. Understanding and 
overcoming these challenges is a critical focus of modern 
drug development.

Laboratory experiments based on cell-based methods 
are the current standard for accurately determining whether 
drugs can effectively cross the BBB, but they are also time 
consuming and labor intensive [7]. For reference, cell cul-
ture supplies and equipments cost thousands of dollars and 
require delicate and time intensive experimental proce-
dures [8]. In recent years, machine learning (ML) and deep 
learning (DL) have become increasingly effective tools for 
predicting BBB permeability at virtually limited cost [9, 
10]. This approach has the potential to significantly accel-
erate the drug discovery process by allowing researchers 
to screen thousands of compounds and prioritize promis-
ing candidates early on, saving both resources and time. 
In 2020, Singh et al. developed random forest, multilayer 
perceptron, and sequential minimal optimization models 
using a small dataset of 605 compounds and achieved an 
accuracy of 86.5% on an external set of 1,566 compounds 
[11]. The DeePred-BBB study applied ML (support vec-
tor machines, k-Nearest Neighbor, Random Forest, naïve 
Bayes) and DL (deep neural network, convolutional neu-
ral network 1-dimension, convolutional neural network by 
transfer learning) algorithms to a dataset of 3,605 diverse 
compounds [12]. They discovered that a DNN model with 
three layers (depth) having 200, 100, and 2 nodes each and 
integrated calculated features from the open-source Padel 
tool was most accurate.

In 2021, Blood-Brain Barrier Database (B3DB), the larg-
est benchmark dataset for BBB permeability to date, was 
introduced. Compiled from 50 published sources and con-
sisting of 7,807 compounds, it was designed to address the 
limitations of previous studies, which were constrained by 
small datasets and limited chemical diversity [13]. While 

the literature had shown significant progress in applying 
ML and DL models to predict BBB permeability, there was 
now the opportunity to improve upon prior approaches and 
explore new methodologies that leverage the expanded 
chemical diversity of B3DB. Following its release, an ML-
based classification read-across structure-activity relation-
ship linear discriminant analysis model using the B3DB 
dataset emerged, highlighting the role of lipophilicity, 
electronic effects, and steric factors in facilitating BBB 
prediction [14]. Using a validation set of compounds from 
the DrugBank dataset, which had undergone experimental 
assessments for BBB penetration, their model achieved a 
predictive accuracy of 0.673, precision of 0.928, F-measure 
of 0.757, and balanced accuracy of 0.723, results compa-
rable to the performance of the LightBBB online server 
[15]. Also utilizing the B3DB dataset, the transformer-based 
model MegaMolBART combined with an XGBoost classi-
fier demonstrated improved results over traditional machine 
learning approaches achieving an accuracy of around 0.83 
on the B3DB test set [16]. These studies have demonstrated 
the utility of the B3DB dataset; however, there is still poten-
tial to further improve model accuracy and ensure robust 
generalizability to novel compounds.

Transfer Learning is a powerful ML technique that has 
been highly successful in various domains, including natu-
ral language processing [17], computer vision [18], and 
speech recognition [19]. By leveraging knowledge from a 
pre-trained model on one task, it enhances performance on a 
different but related task. In drug discovery, transfer learning 
has been used to predict molecular properties and activities, 
including physiological, biophysical, and physicochemical 
characteristics [20]. However, its application to BBB per-
meability prediction remains largely unexplored. Quantum 
chemical properties have been shown to augment DL mod-
els for predicting molecular properties, including absorp-
tion, distribution, metabolism, and excretion (ADME), 
which are critical in modern drug discovery [21]. But no 
prior work has integrated quantum chemical properties with 
BBB permeability prediction using transfer learning.

In our study, we developed a novel transfer learning 
approach that leverages quantum chemical (QC) property 
as the source domain to predict the binary classification of 
BBB permeability, validating its performance on an exter-
nal dataset derived from in vitro experiments. QC properties 
including electronic, topological, and geometric descriptors 
are anticipated to be useful in BBB prediction due to their 
relation to the fundamental factors influencing BBB trans-
port including logD, pKa, rate of transport, binding affin-
ity with p-glycoproteins [22]. Moreover, transfer learning 
is particularly powerful when large, well-characterized 
datasets (such as QC properties) are leveraged to gener-
ate predictions in a lower-data domain (BBB permeability) 

1 3



Drug Delivery and Translational Research

[23]. We pretrained deep neural network-based models on 
QC properties using the QM9 and QM9-extended datasets, 
then fine-tuned them for BBB permeability prediction using 
the B3DB dataset. To further evaluate our approach, we 
compared our transfer learning models against traditional 
machine learning and deep learning methods, including sup-
port vector machines (SVM), deep neural networks (DNN), 
and direct message passing neural networks (D-MPNN), 
using the B3DB dataset. To assess the ability of these mod-
els to generalize beyond the B3DB chemical space, we 
curated an external test set of compounds. We selected 18 
compounds from the Emory Enriched Bioactive Library 
(EEBL) with limited documentation of their BBB perme-
abilities in the literature and performed in vitro experiments 
with Parallel Artificial Permeability Assay-BBB (PAMPA-
BBB) designed to simulate the passage of drugs across BBB 
membranes using dried lipids in a system of 96-well plates. 
The PAMPA assay serves as a more efficient alternative to 
traditional, often expensive and time-consuming cell-based 
methods, and is used as the ground truth in this study. Ulti-
mately, the synergy of computation and experimentation 
creates a self-improving system in which the continuous 
collection of new data allows for refining and improving 
model accuracy over time. This iterative process accelerates 
drug discovery, enabling faster, more cost-effective, and tar-
geted identification of CNS-active or CNS-sparing drugs.

Results

The B3DB dataset was used for model development and 
divided into a 75/25 train/test split. These splits were used 
to build a D-MPNN model as implemented in Chemprop 
(https://github.com/chemprop)3. For the other models, 
molecular representations including “feature set 1”, 2D 
RDKit descriptors, Morgan fingerprints, combined 2D 
RDKit descriptors and Morgan fingerprints, and Mol2Vec 
were computed. The descriptor set, which we refer to as 
“feature set 1” consists of molecular weight (MW), parti-
tion coefficient (LogP), topological surface area (TPSA), 
and number of hydrogen bond donors (HBD). These were 
selected based on the CNS drug space as defined by the 
6 physicochemical properties: calculated log partition 

coefficient (ClogP), calculated log distribution coefficient 
(ClogD), MW, TPSA, HBD, acid dissociation constant 
(pka). For transfer learning, the source domain models were 
built first with the QM9 and QM9-extended datasets prior to 
the fine-tuning of the second model with the B3DB data [21, 
24]. Details on the datasets used in this study are provided 
in Table 1. Model performances were assessed using the fol-
lowing metrices: accuracy, precision, recall, F1-score, and 
the area under the receiver operating characteristic (ROC) 
curve (AUC). The overall workflow applied in this study is 
illustrated in Fig. 1.

Evaluation of model performances on the B3DB test 
set

Molecular representation plays a critical role in model per-
formance [25, 26]. Different representations encode dif-
ferent aspects of chemical information, capturing local to 
global properties, and directly impacting the model’s ability 
to learn meaningful relationships. To gain insight into which 
representations worked best depending on the complexity of 
the associated model, we evaluated several molecular repre-
sentations, including molecular descriptors, Morgan finger-
prints, combination of molecular descriptors and Morgan 
fingerprints, and learned vector representations of molecular 
substructures (Mol2Vec), across several machine learning 
algorithms. As depicted in Fig. 2, SVMs achieved the high-
est overall performance on the B3DB test set with the com-
bined RDKit and Morgan fingerprints (accuracy: 89.08%, 
F1: 0.92, AUC: 0.877). SVMs also achieved high perfor-
mance with the 208 RDKit computed 2D physicochemical 
descriptors (accuracy: 87.96%, F1: 0.91, AUC: 0.866) and 
Mol2Vec vector representations (accuracy: 87.7%, F1: 0.91, 
AUC: 0.861), but lost performance with Morgan fingerprints 
(accuracy: 83.18%, F1: 0.88, AUC: 0.771) and the simpler 
initial descriptor set, feature set 1 (accuracy: 82.47%, F1: 
0.87, AUC: 0.794). For DNNs, model performance was 
consistent across all representations involving 2D physi-
cochemical properties, Morgan fingerprints, and their com-
bination, with accuracies of 86.99%, 86.13%, and 87.35% 
respectively, but had lower performance with Mol2Vec 
(42%). The D-MPNNs achieved better performance with 
hyperparameter optimization (accuracy: 88.01%) and did 

Table 1  Datasets for BBB permeability and QC property prediction
Name Task Used for training or testing Data set size Elements covered No. Heavy atoms
B3DB BBB+/BBB- Both 7,807 CNOFSClBr 1-136
QM9 QC property Training 133,885 CNOF 1–9
QM9-extended QC property Training 153,716 CNOFSCl 1–9
Emory Test BBB+/BBB- Testing 18 CNOFSClBr 6–45
B3DB was used in training and testing for model development for BBB permeability prediction. QM9 and QM9-extended datasets were used 
for source domain model development in the first half of transfer learning. Emory Test consists of the 18 compounds selected to run through 
PAMPA and validate the computational models
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consistent performance across all QC properties. For trans-
fer learning models based on the QM9-extended source 
domain, the best QC properties to offer transfer learning 
capability with the initial descriptor set (feature set 1) as 
representation were polarizability (79.88% accuracy on the 
B3DB test set), dipole moment (81.10%), HOMO (79.98%), 
LUMO (80.23%), gap (81.91%), and ZPVE (81.40%). Over-
all, the transfer learning models had improved performance 

not demonstrate any significant improvement from RDKit 
feature concatenation to their learned molecular representa-
tion (accuracy: 87.75%).

For QM9-based transfer learning, the source QC task of 
polarizability with the initial descriptor set (feature set 1) as 
representation, achieved predictive performance of 80.74% 
accuracy and dipole moment of 81.00% on the B3DB test 
set (Table  2). This descriptor set (feature set 1) achieved 

Fig. 2  Model performances on the B3DB test set.
The models shown here represent the top-performing ones on the 
B3DB test set, evaluated using three key metrics: accuracy, F1 score, 
and ROC-AUC. SVMs achieved the highest overall performance with 

the combined RDKit and Morgan fingerprints. Significant difference 
was found between SVM (Rdkit feat + FP) and QM9 TL − mu (Feature 
set 1) (*p<0.05). Error bars express binomial confidence interval at 
95% confidence level.

 

Fig. 1  Illustration of the work-
flow applied in this study.
The B3DB dataset was split into 
a random train/test 75/25 split. To 
achieve a more balanced dataset, 
we applied the oversampling 
strategy to the training split. A 
D-MPNN model was built as 
implemented in Chemprop. For 
the other models, molecular 
representations including “feature 
set 1”, 2D RDKit, Morgan 
fingerprints, combined 2D RDKit 
and Morgan fingerprints, and 
Mol2Vec were computed. For 
the transfer learning models, 
the source domain models were 
built first with the QM9 and 
QM9-extended datasets prior 
to the fine-tuning of the second 
model with the B3DB data. The 
QC properties used were dipole 
moment, polarizability, HOMO, 
LUMO, gap, electronic spatial 
extent, ZPVE, and heat capacity. 
Created with Biorender.com
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Model Molecular Representation Accuracy F1 Score ROC-AUC
SVM (grid search hyper opt) Feature set 1 0.8247 0.87 0.7943

2D RDKit 0.8796 0.91 0.8661
Morgan fingerprint 0.8318 0.88 0.7716
Rdkit feat + FP 0.8908 0.92 0.8774
Mol2Vec 0.8770 0.91 0.8619

DNN [4] Feature set 1 0.8232 0.86 0.805
2D RDKit 0.8699 0.9 0.8683
Morgan fingerprint 0.8613 0.89 0.8503
Rdkit feat + FP 0.8735 0.9 0.8669
Mol2Vec 0.4200 0.89 0.8413

MPNN, hyperopt Learned 0.8801 0.908 0.8620
MPNN Learned 0.8780 0.905 0.8669
MPNN + RdKit features Learned 0.8775 0.906 0.8619
QM9 TL - alpha Feature set 1 0.8074 0.86 0.7752

2D RDKit 0.6611 0.73 0.6479
Morgan fingerprint 0.7246 0.81 0.6419
Rdkit feat + FP 0.6662 0.79 0.5458
Mol2Vec 0.6936 0.78 0.6349

QM9 TL - mu Feature set 1 0.8100 0.86 0.7842
2D RDKit 0.7678 0.82 0.7563
Morgan fingerprint 0.7119 0.77 0.6889
Rdkit feat + FP 0.7348 0.81 0.6851
Mol2Vec 0.7774 0.83 0.742

QM9 TL - HOMO Feature set 1 0.7200 0.78 0.701
2D RDKit 0.7256 0.79 0.6986
Morgan fingerprint 0.4705 0.41 0.5448
Rdkit feat + FP 0.6662 0.71 0.6778
Mol2Vec 0.6387 0.7 0.6328

QM9 TL - LUMO Feature set 1 0.7759 0.82 0.7646
2D RDKit 0.7561 0.81 0.728
Morgan fingerprint 0.7300 0.73 0.6212
Rdkit feat + FP 0.7444 0.82 0.6849
Mol2Vec 0.7434 0.81 0.6976

QM9 TL - gap Feature set 1 0.7815 0.83 0.7589
2D RDKit 0.7332 0.80 

0.78
0.6865

Morgan fingerprint 0.6946 0.78 0.6353
Rdkit feat + FP 0.6911 0.76 0.6223
Mol2Vec 0.6768 0.6296

QM9 TL - ZPVE Feature set 1 0.7825 0.83 0.7594
2D RDKit 0.7215 0.78 0.6954
Morgan fingerprint 0.6748 0.75 0.6367
Rdkit feat + FP 0.6723 0.76 0.6132
Mol2Vec 0.6540 0.74 0.6167

QM9 TL - cv Feature set 1 0.7998 0.85 0.775
2D RDKit 0.7307 0.79 0.7089
Morgan fingerprint 0.7109 0.80 0.6251
Rdkit feat + FP 0.7038 0.80 0.618
Mol2Vec 0.6479 0.72 0.6315

QM9 TL - r2 Feature set 1 0.7576 0.83 0.6806
2D RDKit 0.6621 0.71 0.6708
Morgan fingerprint 0.3918 0.14 0.5203
Rdkit feat + FP 0.6108 0.63 0.6465

Table 2  Model performances on the B3DB test set. This table outlines the performances of several molecular representation and model combina-
tions (feature set 1, 2D RDKit, Morgan fingerprint, Rdkit feat + FP, and Mol2Vec) on the B3DB test set. Metrices include accuracy, F1 score, and 
ROC-AUC
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set. The goal was to form an external validation set approxi-
mating equal representation of permeable and impermeable 
compounds. The permeation for each of the 18 compounds 
as determined by the PAMPA-BBB Assay are shown in 
Supplementary Table 1. The compounds can be further clas-
sified based on their drug class: experimental (2), corticoste-
roid (2), immunomodulatory (1), vitamin (1), analgesic (1), 
antimicrobial (7), investigation for cancer therapy (3), and 
antiprotozoal (1). These drugs vary significantly in terms of 
class, mechanism of action, and therapeutic uses. Some, like 
beclomethasone dipropionate [28] and dimethyl fumarate 

with a simpler molecular representation (feature set 1) and 
expanded chemical space that included Sulfur (S) and Chlo-
rine (Cl) atoms.

Validation of model performances on the PAMPA-
BBB assay derived test set

To validate the effectiveness of the computational models, 
18 of the 2,036 active EEBL compounds were chosen to 
complete in vitro validation [27]. These 18 compounds were 
chosen after filtering compounds found in the B3D3 training 

Model Molecular Representation Accuracy F1 Score ROC-AUC
Mol2Vec 0.6692 0.72 0.6693

QM9 ext TL - alpha Feature set 1 0.7988 0.85 0.7611
2D RDKit 0.6936 0.78 0.6426
Morgan fingerprint 0.6916 0.79 0.6137
Rdkit feat + FP 0.3552 0 0.5
Mol2Vec 0.6443 0.72 0.6227

QM9 ext TL - mu Feature set 1 0.8110 0.86 0.7808
2D RDKit 0.7256 0.78 0.7191
Morgan fingerprint 0.7053 0.78 0.6661
Rdkit feat + FP 0.7571 0.82 0.7239
Mol2Vec 0.7749 0.84 0.7284

QM9 ext TL - HOMO Feature set 1 0.7998 0.85 0.7712
2D RDKit 0.6580 0.71 0.6558
Morgan fingerprint 0.4837 0.45 0.5473
Rdkit feat + FP 0.6585 0.75 0.607
Mol2Vec 0.6580 0.73 0.6372

QM9 ext TL - LUMO Feature set 1 0.8023 0.85 0.7844
2D RDKit 0.7754 0.83 0.7481
Morgan fingerprint 0.5767 0.61 0.604
Rdkit feat + FP 0.6540 0.72 0.6436
Mol2Vec 0.7327 0.80 0.689

QM9 ext TL - gap Feature set 1 0.8191 0.86 0.7958
2D RDKit 0.7393 0.80 0.7172
Morgan fingerprint 0.6606 0.73 0.6356
Rdkit feat + FP 0.6997 0.77 0.6582
Mol2Vec 0.7149 0.79 0.6643

QM9 ext TL - zpve Feature set 1 0.8140 0.86 0.7893
2D RDKit 0.7231 0.79 0.6808
Morgan fingerprint 0.7114 0.78 0.6689
Rdkit feat + FP 0.6575 0.74 0.6223
Mol2Vec 0.7058 0.80 0.6302

QM9 ext TL - cv Feature set 1 0.7154 0.80 0.6377
2D RDKit 0.6982 0.76 0.6808
Morgan fingerprint 0.6895 0.78 0.6153
Rdkit feat + FP 0.7790 0.83 0.757
Mol2Vec 0.6601 0.73 0.6371

QM9 ext TL - r2 Feature set 1 0.3552 0 0.5
2D RDKit 0.6773 0.74 0.6563
Morgan fingerprint 0.3948 0.14 0.5237
Rdkit feat + FP 0.6570 0.73 0.6267
Mol2Vec 0.7129 0.78 0.6775

Table 2  (continued) 
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Overall, the best performing models were transfer learn-
ing models. Specifically, the model trained on the QM9-
extended polarizability property correctly classified 17 out 
of 18 compounds, while the model trained on the QM9-
extended dipole moment property achieved correct classifi-
cation across all 18 experimental compounds.

Additional analyses to assess the contribution of QC 
transfer learning

To clarify the contribution of QC-based transfer learning, 
we compared a descriptor-only DNN baseline to models 

[29] are well-established medications for inflammatory and 
autoimmune diseases, whereas others, like 17-DMAG [30] 
and Obatoclax Mesylate [31], are experimental and under 
investigation for cancer and other conditions. Figure  3A 
shows the compound classes and Fig. 3B outlines the over-
all permeability trends in form of Pe value for each of the 
tested drugs.

The heat map in Fig. 4 shows the performance of selected 
models on this test set of 18 compounds. These models were 
chosen based on their performance on a 25% held-out test 
split from the B3DB dataset. The D-MPNN achieved an 
accuracy of 77.78%, SVM of 72.22%, and DNN of 83.33%. 

Fig. 3  PAMPA-BBB permeability 
value versus BBB passage group-
ing for each drug.
(A) This image outlines the vari-
ous classifications of each of the 
18 compounds whose predicted 
permeability through the BBB 
was validated with the PAMPA-
BBB assay. Images created with 
RDKit and figure created with 
BioRender.com. (B) This figure 
shows the relative Pe or perme-
ability values of each drug as it 
pertains to its ability to pass the 
BBB. Boundaries set by low and 
high permeability controls fall at 
1.5×10-6 cm/second and 4 ×10-6 
cm/second, respectively. These 
boundaries are indicated by color 
change and dotted lines on the 
graph. Each dot represents one of 
the drugs tested in the PAMPA-
BBB Assay and their respective 
Pe values
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gap, Accuracy 0.819 → 0.753). On the PAMPA test set, QC-
pretrained models continued to achieve strong performance 
despite the removal of LogP and MW, including QM9-ext 
TL alpha (Accuracy 0.944 → 0.889) and QM9-ext TL gap/
zpve (Accuracy ∼ 0.833).

Comparison with Pgp inhibition

To further evaluate the specificity and generalizability of 
QC-based transfer learning, we compared models pretrained 
on QC properties (QM9 and QM9-ext) to models pretrained 
on P-glycoprotein (P-gp) inhibition, a task-specific biologi-
cal property relevant to drug absorption, metabolism, and 
brain penetration (Fig. 7). On the B3DB test set, QC-trans-
fer learning models achieved higher predictive performance 
than P-gp pretrained models. Accuracy ranged from 0.7988 
to 0.8191 for QC-based embeddings compared to 0.7739–
0.7769 for P-gp embeddings, with similar trends observed 
for F1 score (0.85–0.86 vs. 0.82–0.83) and ROC-AUC 
(0.7611–0.7958 vs. 0.7521–0.7657). On the PAMPA curated 
test set, the differences were more pronounced. QC-transfer 
learning models showed substantially higher performance, 

initialized with QC-pretrained embeddings across the two 
independent test sets (Fig. 5). On the B3DB held out test set, 
QC-transfer learning models achieved comparable or mod-
estly higher performance relative to the descriptor baseline 
(Accuracy 0.8059, ROC-AUC 0.8010), with several QC-
derived embeddings (e.g., gap, zpve, mu) showing improve-
ments in accuracy and F1. In contrast, on the PAMPA 
curated test set, the benefit of QC pretraining was more pro-
nounced: while the descriptor-only baseline achieved Accu-
racy/ROC-AUC 0.78, with QM9-ext TL dipole moment and 
polarizability embeddings achieving near-perfect accuracy 
and ROC-AUC.

Feature ablation

To evaluate whether QC-transfer learning provides predic-
tive value beyond lipophilicity and molecular weight, we 
repeated the analysis after removing LogP and MW from 
the descriptor set (Fig.  6). On the B3DB test set, perfor-
mance decreased across all models when these descriptors 
were excluded, yet QC-transfer learning models maintained 
competitive accuracy and ROC-AUC (e.g., QM9-ext TL 

Fig. 4  Classification of PAMPA-validated compounds and heat map of 
model predictions on the PAMPA external test set.
Model performances on the external dataset curated from the results of 

the PAMPA experiments of EEBL compounds. Models listed here are 
the models that performed best on the B3DB test set
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Discussion and conclusion

Leveraging the B3DB dataset, we investigated several 
molecular representations and machine learning models, 
evaluating their effectiveness in predicting BBB perme-
ability. Additionally, we examined the potential for transfer 
learning techniques, particularly when trained on a source 
dataset of QC properties, to transfer to the domain task of 
BBB penetration. To assess the generalizability of these 
approaches, we curated an external dataset comprising 18 
compounds, each with corresponding in vitro data obtained 
through PAMPA experiments.

Evaluation of model performances with various molecu-
lar representations on the B3DB test set demonstrated that 
SVMs (combined RDKit and Morgan fingerprint represen-
tation) attained best overall performance with accuracy of 
89.08%, AUC of 0.877, and an F1 score of 0.92. RDKit 
computed physicochemical properties reflect the drug’s 
passive diffusion capabilities, while Morgan fingerprints 
capture specific interactions like uptake, efflux, and protein 
binding. The integration of these complementary descrip-
tors provided a more complete and comprehensive repre-
sentation of the molecules.

Given the potential for transfer learning to enhance 
model performance when data from related domains is 
available, we investigated its applicability to the B3DB 
dataset. Transfer learning methods are particularly use-
ful in situations where labeled data is limited or expensive 
to obtain, as they allow a model to leverage knowledge 
learned from a source domain (QC properties) and apply 
it to a target domain (BBB permeability) [32]. We selected 
QC properties to be the source domain in our study because 

with some embeddings achieving correct prediction for all 
18 compounds, whereas P-gp pretrained models performed 
poorly (Accuracy/F1/ROC-AUC ≈ 0.61).

Scaffold split

To evaluate model generalizability to novel chemical scaf-
folds, we constructed models using a scaffold-based split to 
ensure test molecules from the B3DB set are structurally 
distinct from those used in training. Overall, models exhib-
ited a modest decline in performance on the held out B3DB 
and PAMPA curated test sets compared to random splits, 
consistent with the more stringent nature of scaffold-based 
evaluation (Table 3).

On the B3DB test set, the MPNN model achieved 0.8683 
/ 0.8971 / 0.9262 (Accuracy / F1 / ROC-AUC) under scaf-
fold split compared to 0.8801 / 0.908 / 0.8620 under random 
split. The DNN model showed a similar trend (0.7982 / 0.84 
/ 0.7820 vs. 0.8232 / 0.86 / 0.805). For the SVM baseline, 
performance decreased slightly from 0.8247 / 0.87 / 0.7943 
to 0.8140 / 0.86 / 0.7872, while the QC-based transfer learn-
ing models (QM9-ext pretraining) generally maintained 
accuracies between 0.77 and 0.82 on B3DB.

Evaluation on the PAMPA dataset reflected a comparable 
pattern. Accuracies across models ranged from 0.72 to 0.83 
under scaffold split, compared to 0.78-1.00 under random 
split, indicating reduced but still meaningful predictive per-
formance on unseen molecular scaffolds.

Fig. 5  Performance comparison of descriptor-only and QC-transfer 
learning models for BBB permeability prediction.
Accuracy and ROC-AUC are shown for nine models evaluated on the 
B3DB external test set (left) and the PAMPA curated test set (right). 
The descriptor-only DNN serves as the baseline. QC-transfer learn-

ing models achieved comparable or modest improvements on B3DB, 
while showing substantial performance gains on the PAMPA set, with 
QM9-ext TL μ and α embeddings achieving near-perfect predictive 
performance. Error bars express binomial confidence interval at 95% 
confidence level
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on BBB permeability data spanning a broader, drug-like 
chemical space.

For transfer learning models based on the QM9 source 
domain, polarizability and dipole moment emerged as the 
most effective QC properties for enhancing predictive per-
formance (Table 2). To provide chemical context for their 
influence on BBB permeability, we examined representa-
tive compounds from both the training and test sets. From 
the training set, diazepam, a benzodiazepine with a fused 
aromatic ring system, exhibits high polarizability, moder-
ate dipole moment, and high lipophilicity, features that 
align with its known BBB permeability. In contrast, furo-
semide, a sulfonamide diuretic with a polar sulfonamide 
group and multiple hydrogen bond donors, displays reduced 
polarizability and higher dipole moment, contributing to its 

they provide detailed, fundamental insights into the elec-
tronic structure and reactivity of molecules that influence 
the fundamental factors influencing BBB transport includ-
ing logD, pKa, rate of transport, binding affinity with p-gly-
coproteins. Both the QM9 and QM9-extended datasets were 
used for source domain model development to investigate 
whether training on an expanded chemical space including 
the additional heavy atoms of S and Cl had any impact on 
model performance. Notably, these datasets consist primar-
ily of small molecules (≤ 250 Da), whereas typical BBB-
permeable drugs are larger (∼ 300–400 Da). Performing 
high-quality QC calculations on many larger molecules is 
computationally intensive and impractical, so pretraining 
on smaller molecules allows the model to efficiently learn 
fundamental QC relationships, which can then be fine-tuned 

Fig. 6  Impact of removing LogP 
and molecular weight (MW) 
descriptors on transfer learning 
model performance.
Bar plots compare accuracy for 
models trained with the full fea-
ture set versus an ablated feature 
set excluding LogP and MW. 
Results are shown for (upper) 
the B3DB test set and (lower) 
the PAMPA test set. Across most 
models, removal of LogP and 
MW led to a reduction in predic-
tive performance, with the largest 
drops observed in QM9-ext TL 
models using HOMO, LUMO, 
and gap descriptors. Notably, 
QM9-ext TL models with dipole 
moment (μ) retained relatively 
strong accuracy even without 
LogP and MW, particularly in the 
B3DB test set, suggesting that 
dipole-derived quantum proper-
ties capture complementary 
information to standard physi-
cochemical descriptors. These 
findings highlight the importance 
of LogP and MW as influential 
features in BBB permeability 
prediction, while also underscor-
ing the added predictive value of 
incorporating quantum chemical 
descriptors. Error bars express 
binomial confidence interval at 
95% confidence level

 

1 3



Drug Delivery and Translational Research

the chemical space to include the S and Cl atoms of QM9-
extended, several QC properties including the electronic 
properties (HOMO, LUMO, gap) had improved transfer 
learning performance. This supports the chemical intuition 
that S and Cl can alter orbital energies due to their higher 
electronegativity and larger atomic radius, respectively.

Evaluating the generalizability of ML models on exter-
nal datasets is crucial to ensure robustness and reliability in 
real-world applications. To curate our external dataset, we 
selected 18 molecules from the EEBL to form an external 
validation set with the goal of approximating equal repre-
sentation of permeable and impermeable compounds. Spe-
cial attention was given to selecting compounds with limited 
or poorly documented permeability data in the literature to 
challenge the models.

All model predictions for the six compounds, BMY 7378, 
beclomethasone dipropionate, fluocinolone acetonide, 

non-permeable classification. From the test set, fluradoline 
contains aromatic systems imparting high polarizability, 
aligning with its BBB permeability. Mezlocillin, a BBB-
impermeable β-lactam antibiotic with a penicillin core, 
shares structural and QC features with furosemide including 
high dipole moment from multiple polar moieties.

For transfer learning models based on the QM9-extended 
source domain, the best QC properties to offer transfer 
learning capability with the initial descriptor set (feature 
set 1) as representation were polarizability, dipole moment, 
HOMO, LUMO, gap, and ZPVE. The four descriptors of 
feature set 1 (MW, LogP, TPSA, and HBD), capture core 
molecular properties and are consistent across chemical 
spaces, making them ideal for transfer learning. A simpler 
representation is preferred for transfer learning as it reduces 
noise and redundancy, allowing the model to focus on gen-
eralizable patterns learned during pretraining. By expanding 

Table 3  Performance of different machine learning models and transfer learning approaches on the B3DB and PAMPA test sets
Model Molecular Representation B3DB (Acc / F1 / ROC-AUC) PAMPA (Acc / F1 / ROC-AUC)
DNN Feature set 1 0.7982 / 0.84 / 0.7820 0.8333 / 0.8421 / 0.8333
MPNN Learned 0.8683 / 0.8971 / 0.9262 0.8333 / 0.8571 / 0.8333
SVM Feature set 1 0.8140 / 0.86 / 0.7872 0.7222 / 0.7826 / 0.7222
QM9-ext TL - alpha Feature set 1 0.7772 / 0.85 / 0.7058 0.7222 / 0.7826 / 0.7222
QM9-ext TL - mu Feature set 1 0.8181 / 0.87 / 0.7810 0.7222 / 0.7619 / 0.7222
QM9-ext TL - HOMO Feature set 1 0.8053 / 0.85 / 0.7859 0.7222 / 0.7059 / 0.7222
QM9-ext TL - LUMO Feature set 1 0.8145 / 0.86 / 0.7852 0.7222 / 0.7619 / 0.7222
QM9-ext TL - gap Feature set 1 0.8145 / 0.86 / 0.7855 0.7778 / 0.8000 / 0.7778
QM9-ext TL - zpve Feature set 1 0.8130 / 0.86 / 0.7849 0.6667 / 0.7273 / 0.6667
QM9-ext TL - r2 Feature set 1 0.7367 / 0.80 / 0.7016 0.6111 / 0.6957 / 0.6111
QM9-ext TL - cv Feature set 1 0.7725 / 0.83 / 0.7240 0.6111 / 0.6957 / 0.6111
Accuracy (Acc), F1 score (F1), and ROC-AUC are reported for each model. “Feature set 1” refers to molecular descriptors (MW, LogP, TPSA, 
and HBD) used as input, while “Learned” indicates representations learned directly by the model (e.g., MPNN). QM9-ext TL denotes models 
pretrained on QM9-extended QC properties (α, µ, HOMO, LUMO, gap, ZPVE, r², CV) and subsequently fine-tuned on the BBB permeability 
task

Fig. 7  Comparison of QC-based transfer learning vs. Pgp inhibition 
pretrained embeddings for BBB permeability prediction.
Grouped bar plots show Accuracy, F1 Score, and ROC-AUC for mod-
els pretrained on general QC properties (QM9 and QM9-ext) versus 
models pretrained on P-gp inhibition. Results are shown separately for 
the B3DB test set (left) and PAMPA curated test set (right). QC-trans-

fer learning models consistently outperform P-gp TL models, particu-
larly on the PAMPA set, demonstrating that QC-derived embeddings 
capture generalizable molecular features relevant for BBB perme-
ability, whereas task-specific embeddings (P-gp inhibition) are less 
transferable. Error bars express binomial confidence interval at 95% 
confidence level
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antibiotic used to treat bacterial infections, is not typically 
used as a first-line agent for CNS infections, as other antibi-
otics with better BBB penetration are usually preferred [38]. 
Diminazene aceturate is a drug commonly used to treat try-
panosomiasis (African sleeping sickness) and babesiosis, 
acting mainly on the bloodstream and tissues with limited 
central effect [39].

Transfer learning models performed well in aligning 
with in vitro PAMPA assay results for the compounds being 
investigated for cancer research and treatment. Transfer 
learning models are the only models shown in Fig. 4 that 
accurately predicted the impermeability of 17 DMAG 
(Alvespimycin) HCl, a heat shock protein 90 (HSP90) 
inhibitor [40, 41] with potential antineoplastic activity via 
the mechanism of reactive oxygen species (ROS) genera-
tion. This compound has known challenges in crossing bar-
riers such as the BBB, likely due to its large polar surface 
area and high molecular weight [41]. All transfer learning 
models, excluding the QM9 dipole moment property, also 
do well to predict the impermeability of YM155 (sepan-
tronium bromide). The ability of the QM9-extended dipole 
moment model to correctly predict sepantronium bromide’s 
impermeability highlights the importance of the expanded 
chemical space of S and Cl atoms in the training dataset. 
Sepantronium bromide contains a quaternary ammonium 
group, imparting a separation of positive and negative 
charges and high dipole moment, properties that align with 
its non-permeability. This compound shows promise for 
antineoplastic activity, particularly against non-small cell 
lung cancer (NSCLC), prostate cancer, and melanoma. For 
obatox mesylate, a compound being explored for its Bcl-2 
antagonism, transfer learning models to QM9-ext properties 
did well to predict its impermeability. The BBB permeabili-
ties of both sepantronium bromide and obatox mesylate are 
not yet extensively documented in the literature.

Clofoctol is an antibiotic that has been investigated for 
its potential to treat gliomas, however, specific quantita-
tive data on its BBB permeability are limited [42]. The 
D-MPNN, DNN, SVM outperform the transfer learning 
models to support the PAMPA assay in clofoctol’s perme-
ability, which is likely due to its small molecular weight and 
hydrophobicity. Aminothiazole [43] is another agent that 
has served as a scaffold in medicinal chemistry and shown 
diverse clinical applications including infection, cancer, 
inflammation, and Alzheimer’s, a neurological disorder in 
which BBB penetration is essential for therapeutic efficacy 
[44]. Except for the D-MPNN, all models predicted ami-
nothiazole’s permeability. Secnidazole is a nitroimidazole 
antimicrobial agent primarily used to treat parasitic infec-
tions like amebiasis, giardiasis, and bacterial vaginosis [45]. 
Secnidazole’s impermeability was accurately predicted by 
the transfer learning models to QM9-extended properties 

biotin (vitamin B7), phenacetin, and salicylanilide, aligned 
with the results of the in vitro PAMPA assay for positive 
BBB permeability. These compounds share the common 
characteristics of lipophilicity and small molecular size. 
BMY 7378, a selective α1D-adrenoceptor antagonist and 
partial agonist/antagonist of the 5-HT1A receptor, is an 
experimental drug studied for its potential use for treating 
hypertension as well as dual angiotensin-converting enzyme 
(ACE) inhibition [33]. There is currently limited knowledge 
and data detailing its BBB permeability in widely accessible 
sources or databases. Fluocinolone acetonide shares struc-
tural traits with diazepam, a compound from the training 
set, including a steroid backbone and fused rings, resulting 
in high polarizability and moderate lipophilicity. These fea-
tures support its correct classification as BBB-permeable. 
Biotin (vitamin B7) is known to function as a cofactor for 
several carboxylation reactions in the brain and its mecha-
nism of entry via saturable transport systems into and from 
the CNS has been studied [34, 35]. Phenacetin, a non-opi-
oid analgesic, has been shown to have some degree of CNS 
effects including relaxation, drowsiness, euphoria support-
ing its ability to cross the BBB [35]. Salicylanilides are a 
class of compounds that have demonstrated antimicrobial 
properties but are also being investigated for their antican-
cer properties. The application of salicylanilide derivatives 
for treatment of glioblastoma, a brain tumor in which drug 
penetration of the BBB is needed for therapeutic effect, is an 
area of active medicinal chemistry research [36].

All model predictions for sulfamerazine and diminazene 
aceturate were consistent with the PAMPA assay results of 
BBB impermeability [37]. Sulfamerazine, a sulfonamide 

Table 4  12 ground state QC properties of the QM9 and QM9-extended 
Datasets
Molecular Property Description
mu Dipole moment
alpha Norm of static polarizability
HOMO Highest unoccupied molecular orbital
LUMO Lowest unoccupied molecular orbital
gap Difference between HOMO and LUMO
< R2> Electronic spatial extent
ZPVE Zero-point vibrational energy
cv Heat capacity
U0 Internal energy at 0 K
U298 Internal energy at 298.15 K
G298 Free energy at 298.15 K
H298 Enthalpy at 298.15 K
The QM9 and QM9-extended dataset provides QC properties of 
small organic molecules, which are essential for Understanding 
molecular structure, behavior, and interactions. Electronic properties 
include dipole moment, polarizability, HOMO, LUMO, gap. Spatial 
and structural properties include < R2 > and ZPVE. Thermodynamic 
properties include heat capacity, internal energies, Gibbs free energy, 
and enthalpy
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features that are broadly informative for BBB permeability 
and not limited to task-specific signals.

We acknowledge that the experimental dataset used for 
model validation includes only 18 compounds; however, 
the objective was to experimentally determine the BBB per-
meability of select compounds using PAMPA, particularly 
those for which permeability data were previously unavail-
able. To further evaluate the robustness and generalizability 
of the developed models beyond this small validation set, 
we additionally assessed model performance using a scaf-
fold split, which partitions molecules by structural scaffolds 
to simulate prediction on unseen ones. As expected, model 
performance modestly decreased relative to random splits, 
reflecting the more stringent and realistic nature of scaffold-
based evaluation. Nonetheless, the models maintained con-
sistent predictive ability across both evaluation schemes, 
suggesting that they capture transferable molecular features 
rather than relying on scaffold-specific correlations. Future 
studies will aim to expand this experimentally derived test 
set and complement PAMPA-BBB assays with cell-based 
and in vivo models to account for transporter-mediated 
effects and in situ permeability dynamics.

A limitation of this study is that both the computational 
models and the in vitro experiments assume an intact BBB. 
While this assumption holds true in many physiological 
and pathological contexts, there are scenarios where the 
BBB is compromised. For instance, in gliomas and other 
neurological conditions such as stroke, multiple sclerosis, 
or traumatic brain injury, the BBB integrity is disrupted, 
allowing for altered transport dynamics and permeability. 
These disturbances may significantly impact the applicabil-
ity and accuracy of the models in predicting drug delivery 
or other interactions in such cases. Future work will focus 
on developing models and curating datasets that account for 
BBB disruption to better reflect the complexities of these 
pathological conditions.

Ultimately, our approach has promising potential to 
extrapolate effectively to novel compounds with no exist-
ing BBB permeability data, enabling the identification of 
candidates without the need for extensive testing and allow-
ing the design of compounds with an increased probability 
of success. As we continue to refine our models and expand 
data collection, this synergy of computation and experimen-
tation could accelerate drug discovery, enabling faster, more 
cost-effective, and targeted identification of CNS-active or 
CNS-sparing drugs.

of polarizability, dipole moment, and HOMO. Furaltadone 
HCl was predicted to be impermeable across all models.

Excluding the transfer learning model to QM9 polariz-
ability, all models predicted BBB permeability of dimethyl 
fumarate, a drug whose ability to exert effects within the 
CNS is essential for treating the neurological condition, 
multiple sclerosis. For bardoxolone methyl, the deep learn-
ing models (D-MPNN, DNN, and 5 out of the 6 transfer 
learning models to QM9-extended properties) were consis-
tent with the PAMPA assay result of impermeability. Bar-
doxolone is a novel drug initially developed as a modulator 
of inflammation-associated carcinogenesis by inducing the 
Nrf2 pathway, inhibiting NF-κB, leading to antioxidant and 
anti-inflammatory effects [46].

To evaluate the contribution of QC-derived embeddings, 
we performed analyses for contribution beyond traditional 
descriptors, descriptor ablation experiments, and com-
parison for alternate pretraining tasks. The results of direct 
comparison between descriptor-only models and QC-based 
transfer learning suggests that while LogP and MW remain 
strong contributors to BBB prediction, QC-derived embed-
dings may provide complementary molecular-level infor-
mation that is not fully captured by traditional descriptors. 
The gains were modest on the B3DB test set but more pro-
nounced on the external PAMPA curated test set, indicating 
that QC-based transfer learning has the potential to improve 
generalizability.

Feature ablation analyses further confirmed that the pre-
dictive signal from QC-derived embeddings is not solely 
attributable to lipophilicity or molecular weight. When 
LogP and MW were removed from the descriptor set, QC-
transfer learning models retained strong performance across 
both the B3DB and PAMPA test sets, with only modest 
decreases in Accuracy and ROC-AUC. This finding demon-
strates that QC embeddings contribute unique information, 
likely reflecting electronic and quantum mechanical proper-
ties that influence passive diffusion and membrane interac-
tions, which are not captured by traditional descriptors.

To further isolate the effect of QC-based pretraining, we 
compared models pretrained on QC properties (QM9 and 
QM9-extended) to models pretrained on P-glycoprotein 
(P-gp) inhibition, a biologically relevant property affecting 
drug absorption and brain penetration. P-gp was chosen as 
a comparison because it represents a task-specific endpoint 
directly related to CNS drug disposition. QC-transfer learn-
ing models showed modestly higher performance on the 
B3DB test set and substantially better performance on the 
external PAMPA curated test set, with some embeddings 
achieving near-perfect predictions, whereas P-gp pretrained 
models performed relatively poorly. These results sug-
gest that QC-derived embeddings may capture molecular 
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no more than nine heavy atoms. Each compound underwent 
a low-mode conformational search with the MMFF94x and 
subsequent geometry optimization at the same level of the-
ory as the QM9 data set, B3LYP/6-31G(2df, p). This dataset 
was utilized for source domain model development in trans-
fer learning and was randomly split into train/test 80/20.

P-gp (P-glycoprotein) Inhibition. We used the P-glyco-
protein (Pgp) inhibition dataset curated by Broccatelli et al., 
comprising 1,212 compounds with experimentally deter-
mined activity. Pgp is an ABC transporter that influences 
drug absorption, metabolism, and brain penetration, and 
its inhibition can affect bioavailability and multidrug resis-
tance. The task is binary classification: given a compound’s 
SMILES string, predict whether it inhibits Pgp. A D-MPNN 
was trained on this dataset to generate predictions for QM9 
and QM9-extended compounds, which were then used in a 
transfer learning framework: first pretraining on Pgp inhibi-
tion as a source task and subsequently fine-tuning for BBB 
permeability prediction [47].

Molecular representation

In this study, we explored a range of molecular representa-
tions with different machine learning models to determine 
which representations performed best, depending on the 
complexity of the model used. Below, we describe the rep-
resentations used in our experiments: molecular descriptors, 
Morgan fingerprints, combined descriptors and Morgan fin-
gerprints, and learned embeddings.

Molecular Descriptors. The first descriptor set, which 
we refer to as “feature set 1”, serving as inputs to the mod-
els consists of MW, LogP, TPSA, and HBD. These were 
selected based on the CNS drug space as defined by the 6 
physicochemical properties: ClogP, ClogD, MW, TPSA, 
HBD, pka [48]. These features were normalized for con-
sistency and to improve model performance. Another 
descriptor set included 208 two-dimensional physicochemi-
cal descriptors computed using RDKit. Interpolation was 
applied to address any missing values (Na) for descriptors 
that could not be calculated.

Morgan Fingerprints. Morgan fingerprints encode 
which substructures are within a molecule within a certain 
radius of organic molecule bonds [49]. Morgan fingerprints 
were generated using the RDKit library and computed with 
a radius of 2 and fingerprint size of 2048 bits. The radius 
defines the number of bonds to include around each atom, 
capturing increasingly larger substructures as the radius 
increases. A radius of 2 was chosen to balance computa-
tional efficiency and the level of structural detail captured. 
A fingerprint size of 2048 bits was selected to provide a suf-
ficiently large bit vector for distinguishing between different 

Experimental section

Datasets

B3DB. The dataset used for model development is B3DB, 
one of the largest public BBB benchmark datasets con-
sisting of 7,807 compounds compiled from 50 published 
resources with accompanying precomputed 2D chemical 
descriptors from the Mordred package (Table 1) [13]. The 
set of 7,807 compounds has categorical values of BBB 
permeability (4956 BBB-permeating and 2851 BBB-non-
permeating) and as stated in their publication, compounds 
were cleaned of salts and solvents, and those with heavy 
metal atoms were removed. It consists of a range of heavy 
atoms from 1 to 136 and the heavy atoms C, N, O, F, S, 
Cl, Br. We divided the B3DB dataset into a random train/
test 75/25 split and applied a data balancing technique to 
the training set. Using a balanced dataset is essential in 
preventing bias of the model towards the more dominant 
class of compounds. To achieve a more balanced 1:1 ratio 
of BBB+:BBB-, we applied the random oversampling tech-
nique to the training split in which instances within the 
BBB- class were duplicated.

To evaluate model generalizability across diverse chemi-
cal structures, we performed a scaffold-based split of the 
dataset using Bemis–Murcko scaffolds. Molecules sharing 
the same scaffold were assigned together to either the train-
ing or test set, ensuring that structurally similar compounds 
were not divided across sets. Approximately 75% of com-
pounds were allocated to training and 25% to testing, result-
ing in 5,853 molecules in the training set and 1,952 in the 
test set. Two molecules with invalid SMILES strings were 
excluded.

QM9. The QM9 dataset is a widely used benchmark 
dataset in computational chemistry and machine learning 
consisting of 133,885 molecules [24]. The molecules are 
derived from the GDB-17 chemical space and contain up 
to 9 heavy atoms (carbon, oxygen, nitrogen, fluorine). Each 
molecule was optimized at the B3LYP/6-31G(2df, p) level 
of theory and twelve ground-state quantum chemical prop-
erties are provided: dipole moment, isotropic polarizability, 
energy of HOMO, energy of LUMO, energy of gap, elec-
tronic spatial extent, zero point vibrational energy (ZPVE), 
heat capacity, and atomization energies (U0, U298, G298, 
H298 (Table 4). This dataset was utilized for source domain 
model development in transfer learning and was randomly 
split into train/test 80/20.

QM9-Extended. The QM9-extended dataset expands 
beyond the QM9 chemical space and enables greater appli-
cation to drug discovery by covering an additional ∼ 20,000 
molecules containing sulfur and chlorine atoms [21]. The 
GDB-17 space was filtered for compounds with S or Cl and 
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knowledge and empirical performance. A DNN with a feed-
forward architecture consisting of four layers with 64, 32, 
16, and 1 neurons, respectively, was constructed. ReLU 
(Rectified Linear Unit) activation functions were applied 
to all hidden layers and dropout regularization with a rate 
of 0.1 was applied to prevent overfitting. The model was 
trained using the Adam optimizer with an initial learning 
rate of 0.001 and a batch size of 32. Training was con-
ducted for 1000 epochs, with the learning rate dynamically 
adjusted using a learning rate step scheduler to ensure con-
vergence. Binary cross-entropy loss was employed as the 
loss function.

Baseline DNN. To enable direct comparison with the 
transfer learning architecture, we trained a baseline DNN on 
the BBB permeability dataset using the same layer structure 
as the transfer learning model. The network consisted of six 
fully connected layers: three initial layers for feature encod-
ing ([256, 128, 64]) followed by a classification head ([256, 
128, 1]). ReLU activations were applied after each hidden 
layer, and a dropout rate of 0.2 was used to mitigate overfit-
ting. The final layer employed a sigmoid activation to output 
the probability of BBB permeability. The model was trained 
using the Adam optimizer (initial learning rate = 0.0001) 
with a step learning rate scheduler (step size = 250) and a 
batch size of 32 for 800 epochs. This architecture served as 
a baseline control to evaluate the performance gains attrib-
utable to transfer learning.

D-MPNN. To build GCNN models, we used D-MPNN 
as implemented in Chemprop ​(​​​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​c​h​e​m​p​
r​o​p​​​​​) [52]. The D-MPNN network architecture parameters 
were hyperparameter optimized for the B3DB data set using 
Bayesian optimization, and the optimal hyperparameters 
(depth: 6, hidden size: 1000, number of fully connected 
layers: 3, dropout: 0.25) were then used to train the model. 
Additional featurization with RDKit features as provided 
with Chemprop was also explored.

Transfer Learning. The transfer learning approach 
applied in this study is outlined in Fig. 8 and involves two 
DNN models trained sequentially on different but related 
tasks. Model 1 was trained on the source task, the regression 
of QC properties using either the QM9 or QM9-extended 
dataset. This model was a feedforward DNN consisting of 
four fully connected layers with hidden dimensions of [256, 
128, 64] and a single output neuron (for the predicted QC 
property). The network was trained using the Adam opti-
mizer with an initial learning rate of 0.0001 and a batch size 
of 32.

After convergence, the learned representations from 
this source model were transferred to Model 2, which was 
designed for a target task: binary classification of BBB per-
meability. To enable transfer learning, all layers in Model 
1 except the output layer were preserved and their weights 

molecular structures while maintaining a reasonable com-
putational cost.

Molecular Descriptors combined with Morgan fin-
gerprints. We adopted the approach demonstrated by Yuan 
et al., combining molecular property-based descriptors and 
molecular fingerprints to improve the prediction accuracy 
of BBB permeability [50]. As described above, the 208 2D 
RDKit descriptors served as the molecular property-based 
descriptors. The molecular descriptors and Morgan finger-
prints were concatenated into a unified feature set for each 
compound. The values of property-based descriptors were 
normalized, and the Boolean values of fragment-based 
descriptors were not.

Learned Embeddings. Mol2Vec is an unsupervised 
machine learning approach inspired by the Word2Vec 
model that learns vector representations of molecular sub-
structures. It encodes molecular structures into continuous 
vector representations, which can be used as input features 
for various predictive tasks in cheminformatics [51]. The 
pre-trained Mol2Vec model, which was trained on 20 mil-
lion compounds with radius of 1 for Morgan fingerprints, 
was used to generate embeddings to serve as inputs to the 
models in this study.

Model development

Support vector machine (SVM). Hyperparameter optimi-
zation was conducted using grid search to identify the best 
combination of the kernel, regularization parameter (C), 
kernel coefficient (gamma), and degree (for the polynomial 
kernel). The grid search explored a range of values for C 
(e.g., 1, 10, 100, 1000), gamma (e.g., 0.01, 0.1, 0.02, 0.2, 
0.03, 0.3, 0.04, 0.4, 0.05, 0.5, 0.6, 0.7, 0.8, 0.9), and degree 
(e.g., 2, 3, 4). The optimized SVM model was trained 
using the best hyperparameters identified in the grid search 
(Table 5).

DNN. We conducted manual hyperparameter optimi-
zation using a series of trial runs. Key hyperparameters 
including learning rate, number of hidden layers, number 
of neurons per layer, batch size, and dropout rate were var-
ied individually and in combination based on prior domain 

Table 5  Grid search optimized SVM hyperparameters for each molec-
ular Representation
Molecular Representation kernel C gamma degree
Feature set 1 rbf 1000 0.9 Na
2D RDKit poly 1 0.02 4
Morgan fingerprint poly 100 0.03 4
2D RDKit + Morgan fingerprint poly 1 0.01 4
Mol2Vec poly 1 0.03 4
Hyperparameter optimization was conducted for each of the molecu-
lar representations using grid search to identify the best combina-
tion of the kernel, regularization parameter (C), kernel coefficient 
(gamma), and degree (for the polynomial kernel)
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to enable proper weight reuse and compatibility during 
transfer.

Data analysis

All data was characterized as a continuous or ordinal vari-
able, and then, further analyzed with GraphPad Prism 
(GraphPad Software, Boston, MA, USA). For model per-
formance, binomial 95% confidence intervals of the mean 
of F1-score, ROC-AUC, and accuracy data were analyzed 
for each model [53].

Curation of external validation dataset with PAMPA-
BBB

The EEBL comprises 2,036 diverse small molecules with 
confirmed biological and pharmacological activities, includ-
ing 1,018 FDA-approved compounds. Datapoints included 
in the EEBL are these specific small molecules. These mole-
cules target over 200 distinct proteins involved in more than 
20 signaling pathways, including those related to survival 
and apoptosis [54].

The eighteen commercial drugs from the curated test set 
were obtained from MedChemExpress (Monmouth Junc-
tion, NJ, USA). These drugs were chosen after stratification 
of drugs based off predicted BBB permeability and formed 
an external validation set with the goal of approximating 

frozen, meaning they were excluded from gradient updates 
during further training. The original output layer, used for 
the regression task, was removed and replaced with a new 
classification head consisting of three layers [256, 128, 1] 
with ReLU activations in the hidden layers and a sigmoid 
activation in the final layer for binary output. Model 2 was 
trained on the BBB dataset using the Adam optimizer (ini-
tial learning rate of 0.0001), a step learning rate scheduler 
(step size = 250), and a batch size of 32 for 800 epochs.

Learning was transferred by reusing the feature represen-
tations learned from the QC property prediction task, with 
the assumption that these representations capture molecular 
features relevant to both source and target tasks. Fine-tuning 
was then applied only to the new layers, adapting the previ-
ously learned molecular embeddings to the BBB classifica-
tion task. This transfer was achieved not merely by copying 
weights, but by repurposing the frozen layers as a molecular 
feature extractor, while allowing the new classification lay-
ers to specialize to the BBB prediction objective.

In terms of architectural flexibility, while the backbone 
architecture of the frozen layers remained constant between 
Models 1 and 2, the classification head (new output layers) 
was designed independently. Therefore, it is not necessary 
for the entire architecture, particularly the output layers, 
to match between the source and target models. Only the 
encoder portion (shared layers) needs to remain unchanged 

Fig. 8  Transfer learning from QM 
property to BBB permeability.
Illustration of the transfer learn-
ing methodology applied in this 
study. Knowledge is learned 
from a source domain (quantum 
chemical properties) and trans-
ferred to a target domain (BBB 
permeability). The lock icon 
represents the pretrained model’s 
frozen layers that are not updated 
during training to the new task. 
Created with BioRender.com
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TPSA	� Topological surface area
HBD	� Hydrogen bond donors
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