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ABSTRACT

Artificial intelligence (AI) has rapidly progressed from being a niche curiosity to becoming a real force in the chemical sciences.

In organic synthesis, however, AI’s role is still mostly viewed in two ways: helping automate retrosynthetic planning and speed-

ing up reaction optimization. These advances—like the retrosynthesis engine developed by Segler et al. (2018)1 and the optimi-

zation workflows from Doyle’s group (Shields et al., 2021)2—have been game-changing in specific cases. But if we see AI only in

these roles, we risk overlooking its bigger potential.
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That potential is to use AI not just as a “prediction machine” but
as a creative partner, one that can help generate new ideas, or
hypotheses, that could lead to the discovery of completely new
types of reactivity, reaction mechanisms, and molecular frame-
works (Fig. 1).

Breaking Cognitive Overfitting
Traditionally, synthetic organic chemistry has advanced through
the cycle of observation, intuition, and experimental refinement,
driven by chemist’s ability to recognize subtle patterns in reactiv-
ity. But human thinking is naturally biased: our training, past
experiences, and even the published literature push us toward
familiar reactions. This “cognitive overfitting” means we often
focus on a narrow slice of chemistry.3 AI can help counteract this
by revealing reaction possibilities that fall outside our usual men-
tal patterns.

Recent examples illustrate the point. For example, Cronin and
coworkers4 coupled machine learning with an automated, pro-
grammable synthesis platform to explore reactivity in a closed
loop. Rather than only optimizing known transformations, the
system prioritized experiments that revealed unexpected out-
comes, showing how self-driving laboratories can probe beyond
routine reactivity. Historical antecedents exist—algorithmic
approaches to discovering new reactions were reported as early
as the 1990s,5 but modern implementations integrate continu-
ous instrumentation, feedback control, and richer molecular rep-
resentations. Similarly, the Aspuru-Guzik group has developed
“inverse-design” frameworks using advanced AI models to
explore chemical space in multiple directions at once, consider-
ing several target properties simultaneously, not just one.6 In
both cases, AI acted less like a black box and more like a

collaborator offering “alien” suggestions that challenged conven-
tional design rules.7

Three Shifts Needed
To make this shift more common, three changes are required.
First, broaden the training data: AI models should learn from reac-
tion datasets that capture diverse and underrepresented trans-
formations. Current corpora, whether from public databases
or the literature, are dominated by a few reaction classes. For
example, Beker et al. 8 reported over 10,000 cases of heteroaryl
Suzuki–Miyaura couplings, highlighting the overwhelming preva-
lence of this single transformation. Such abundance risks models’
“learning popularity” rather than reactivity, defaulting to com-
mon reactions instead of uncovering less explored but potentially
transformative chemistries. Countering this bias requires deliber-
ately incorporating reactions such as radical cascades, photo-
chemical rearrangements, and high-valent metal-mediated
oxidations. Second, blend AI with chemical insight: Purely statistical
models risk memorizing patterns rather than capturing underly-
ing reactivity. Embedding mechanistic understanding—through
interpretable physical–organic descriptors such as sterics, elec-
tronics, pKa values, or kinetic parameters—allows predictions to
generalize beyond the training distribution.9 This integration
also makes outputs more chemically meaningful: a model that
incorporates mechanistic context can suggest transformations
that are both novel and consistent with known principles, giving
chemists a stronger basis for trust and follow-up experimenta-
tion. Third, make AI thinking visible: Most current models present
outputs as black boxes, leaving chemists unsure why a prediction
was made. Interfaces should instead reveal which features or
reaction motifs influenced the outcome, highlight precedent
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examples considered similar, and provide calibrated measures of
uncertainty. Such transparency turns opaque predictions into
interrogable hypotheses. This allows chemists to probe, stress-
test, and refine model suggestions, transforming AI from a one-
way oracle into a collaborative partner in discovery.

Beyond Small Molecules
The potential of AI extends far beyond small-molecule synthesis.
In complex molecular settings such as total synthesis of natural
products, diversity-oriented synthesis, or late-stage modification
of bioactive scaffolds, exploring unknown chemical reactivity can
be slow and expensive. AI can act as a triage tool, rapidly narrow-
ing huge numbers of possible reactions to a manageable set
of promising options. Similar opportunities exist in peptide and
protein chemistry. Many bioconjugation, macrocyclization, and
post-translational modification strategies are inspired by small-
molecule logic. AI could go further not only improving site selec-
tivity and orthogonality but also uncovering reaction pathways
that are difficult or impossible to find by trial-and-error screening
alone. Models trained on both organic and enzymatic reactions
could suggest hybrid strategies bridging synthetic chemistry
with biomolecular reactivity. This could speed up the creation of
precise tools for chemical biology. A recent study published in
Nature10 showed how high-throughput experimentation com-
bined with Bayesian optimization can efficiently search reaction
conditions. AI was not intended to outperform human intuition

at known chemistry but to accelerate the productive and uncon-
ventional solutions.

AI is not a final arbiter but a scientific partner—cogenerat-
ing early hypotheses, stress-testing assumptions, and enabling
solutions that neither could achieve alone. For organic chemists,
this means thinking of AI in a new way; not as the final step in
planning the synthesis, but as a partner early in the creative pro-
cess. Just as NMR spectroscopy did not replace the chemist’s
interpretation skills but expanded the kind of structures we could
solve, AI can expand the range of synthetic ideas we can imagine.

Making this vision real will require changes to both infrastruc-
ture and mindset. We need better data standards for reactions;
open databases that include failed, as well as successful experi-
ments; and incentives for chemists to gain cross-disciplinary
skills. More importantly, chemists must see AI reasoning as part
of their own thinking process, not as a black box service done
elsewhere. If we do this, AI will not replace the art of synthesis;
rather, it will make it richer, more daring, and ultimately more
creative.
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Fig. 1 From prediction to co-creation: reframing AI’s role in organic synthesis. Created in BioRender. Raj, M. (2025) https://BioRender.com/gvu05e9
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